With the rapid development of the Internet, the recommendation system is becoming more and more important in people’s life. Click-through rate prediction is a crucial task in the recommendation system, which directly determines the effect of the recommendation system. Recently, researchers have found that considering the user behavior sequence can greatly improve the accuracy of the click-through rate prediction model. However, the existing prediction models usually use the user click behavior sequence as the input of the model, which will make it difficult for the model to obtain a comprehensive user interest representation. In this paper, a unified multitype user behavior sequence modeling framework named as MBIN, a.k.a. multifeedback behavior-based Interest modeling network, is proposed to cope with uncertainties in the noisy data. The proposed adaptive model uses deep learning technology, obtains user interest representation through multihead attention, denoises user interest representation using the vector projection method, and fuses the user interests using adaptive dropout technology. First, an interest denoising layer is proposed in the MBIN, which can effectively mitigate the noise problem in user behavior sequences to obtain more accurate user interests. Second, an interest fusion layer is introduced so as to effectively model and fuse various types of interest representations of users to achieve personalized interest fusion. Then, we used auxiliary losses based on behavior sequences to enhance the effect of behavior sequence modeling and improve the effectiveness of user interest characterization. Finally, we conduct extensive experiments based on real-world and large-scale dataset to validate the effectiveness of our approach in CTR prediction tasks.
In recent years, with the development of enterprises to the Internet, the demand for cloud database is also growing, especially how to capture data quickly and efficiently through the database. In order to improve the data structure at all levels in the process of database analysis engine, this paper realizes the accurate construction and rapid analysis of cloud database based on big data analysis engine technology and deep learning wolf pack greedy algorithm. Through the deep learning strategy, a big data analysis engine system based on the deep learning model is constructed. The functions of deep learning technology, wolf greedy algorithm, and data analysis strategy in the cloud database analysis engine system are analyzed, as well as the functions of the whole analysis engine system. Finally, the accuracy and response speed of the cloud database analysis engine system are tested according to the known clustering data. The results show that compared with the traditional data analysis engine system with character search as the core, the database oriented big data analysis engine system based on a deep learning model and wolf swarm greedy algorithm has faster response speed and intelligence. The research application is that the proposed engine system can significantly improve the effect of the analysis engine and greatly improve the retrieval accuracy and analysis efficiency of fixed-point data in the database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.