Recently, the embedding-based recommendation models (e.g., matrix factorization and deep models) have been prevalent in both academia and industry due to their effectiveness and flexibility. However, they also have such intrinsic limitations as lacking explainability and suffering from data sparsity. In this paper, we propose an end-to-end joint learning framework to get around these limitations without introducing any extra overhead by distilling structured knowledge from a differentiable path-based recommendation model. Through extensive experiments, we show that our proposed framework can achieve state-of-the-art recommendation performance and meanwhile provide interpretable recommendation reasons.
CCS CONCEPTS• Information systems → Recommender systems; • Computing methodologies → Learning latent representations.
Abstract. Mining erasable itemsets first introduced in 2009 is one of new emerging data mining tasks. In this paper, we present a new data representation called PID_list, which keeps track of the id_nums (identification number) of products that include an itemset. Based on PID_list, we propose a new algorithm called VME for mining erasable itemsets efficiently. The main advantage of VME algorithm is that the gain of an itemset can be computed efficiently via union operations on product id_nums. In addition, VME algorithm can also automatically prune irrelevant data. For evaluating VME algorithm, we have conducted experiments on six synthetic product databases. Our performance study shows that the VME algorithm is efficient and is on average over two orders of magnitude faster than the META algorithm, which is the first algorithm for dealing with the problem of erasable itemsets mining.
In social networks, nodes (or users) interested in specific topics are often influenced by others. The influence is usually associated with a set of nodes rather than a single one. An interesting but challenging task for any given topic and node is to find the set of nodes that represents the source or trigger for the topic and thus identify those nodes that have the greatest influence on the given node as the topic spreads. We find that it is an NP-hard problem. This paper proposes an effective framework to deal with this problem. First, the topic propagation is represented as the Bayesian network. We then construct the propagation model by a variant of the voter model. The probability transition matrix (PTM) algorithm is presented to conduct the probability inference with the complexity O(θ(3)log2θ), while θ is the number nodes in the given graph. To evaluate the PTM algorithm, we conduct extensive experiments on real datasets. The experimental results show that the PTM algorithm is both effective and efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.