Retinal ischemia is a major cause of vision loss and impairment and a common underlying mechanism associated with diseases such as glaucoma, diabetic retinopathy, and central retinal artery occlusion. The regenerative capacity of the diseased human retina is limited. Our previous studies have shown the neuroprotective effects of intravitreal injection of mesenchymal stem cells (MSC) and MSC-conditioned medium in retinal ischemia in rats. Based upon the hypothesis that the neuroprotective effects of MSCs and conditioned medium are largely mediated by extracellular vesicles (EVs), MSC derived EVs were tested in an in-vitro oxygen-glucose deprivation (OGD) model of retinal ischemia. Treatment of R28 retinal cells with MSC-derived EVs significantly reduced cell death and attenuated loss of cell proliferation. Mechanistic studies on the mode of EV endocytosis by retinal cells were performed in vitro. EV endocytosis was dose-and temperaturedependent, saturable, and occurred via cell surface heparin sulfate proteoglycans mediated by the caveolar endocytic pathway. The administration of MSC-EVs into the vitreous humor 24 h after retinal ischemia in a rat model significantly enhanced functional recovery, and decreased neuroinflammation and apoptosis. EVs were taken up by retinal neurons, retinal ganglion cells,
The superior colliculus (SC) is the most prominent visual center in mice. Studies over the past decade have greatly advanced our understanding of the function, organization, and development of the mouse SC, which has rapidly become a popular model in vision research. These studies have described the diverse and cell-type-specific visual response properties in the mouse SC, revealed their laminar and topographic organizations, and linked the mouse SC and downstream pathways with visually guided behaviors. Here, we summarize these findings, compare them with the rich literature of SC studies in other species, and highlight important gaps and exciting future directions. Given its clear importance in mouse vision and the available modern neuroscience tools, the mouse SC holds great promise for understanding the cellular, circuit, and developmental mechanisms that underlie visual processing, sensorimotor transformation, and, ultimately, behavior.
Brain-derived neurotrophic factor (BDNF), a neurotrophin essential for neuron survival and function, plays an important role in neuroprotection during neurodegenerative diseases. In this study, we examined whether a modest increase of retinal BDNF promotes retinal ganglion cell (RGC) survival after acute injury of the optic nerve in mice. We adopted an inducible Cre-recombinase transgenic system to up-regulate BDNF in the mouse retina and then examined RGC survival after optic nerve crush by in vivo imaging. We focused on one subtype of RGC with large soma expressing yellow fluorescent protein transgene that accounts for ∼11% of the total SMI-32–positive RGCs. The median survival time of this subgroup of SMI-32 cells was 1 week after nerve injury in control mice but 2 weeks when BDNF was up-regulated. Interestingly, we found that the survival time for RGCs taken as a whole was 2 weeks, suggesting that these large-soma RGCs are especially vulnerable to optic nerve crush injury. We also studied changes in axon number using confocal imaging, confirming first the progressive loss reported previously for wild-type mice and demonstrating that BDNF up-regulation extended axon survival. Together, our results demonstrate that the time course of RGC loss induced by optic nerve injury is type specific and that overexpression of BDNF prolongs the survival of one subgroup of SMI-32–positive RGCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.