In recent years, deep learning has been applied to intelligent fault diagnosis and has achieved great success. However, the fault diagnosis method of deep learning assumes that the training dataset and the test dataset are obtained under the same operating conditions. This condition can hardly be met in real application scenarios. Additionally, signal preprocessing technology also has an important influence on intelligent fault diagnosis. How to effectively relate signal preprocessing to a transfer diagnostic model is a challenge. To solve the above problems, we propose a novel deep transfer learning method for intelligent fault diagnosis based on Variational Mode Decomposition (VMD) and Efficient Channel Attention (ECA). In the proposed method, the VMD adaptively matches the optimal center frequency and finite bandwidth of each mode to achieve effective separation of signals. To fuse the mode features more effectively after VMD decomposition, ECA is used to learn channel attention. The experimental results show that the proposed signal preprocessing and feature fusion module can increase the accuracy and generality of the transfer diagnostic model. Moreover, we comprehensively analyze and compare our method with state-of-the-art methods at different noise levels, and the results show that our proposed method has better robustness and generalization performance.
Domain adaptation-based bearing fault diagnosis methods have recently received high attention. However, the extracted features in these methods fail to adequately represent fault information due to the versatility of the work scenario. Moreover, most existing adaptive methods attempt to align the feature space of domains by calculating the sum of marginal distribution distance and conditional distribution distance, without considering variable cross-domain diagnostic scenarios that provide significant cues for fault diagnosis. To address the above problems, we propose a deep convolutional multi-space dynamic distribution adaptation (DCMSDA) model, which consists of two core components: two feature extraction modules and a dynamic distribution adaptation module. Technically, a multi-space structure is proposed in the feature extraction module to fully extract fault features of the marginal distribution and conditional distribution. In addition, the dynamic distribution adaptation module utilizes different metrics to capture distribution discrepancies, as well as an adaptive coefficient to dynamically measure the alignment proportion in complex cross-domain scenarios. This study compares our method with other advanced methods, in detail. The experimental results show that the proposed method has excellent diagnosis performance and generalization performance. Furthermore, the results further demonstrate the effectiveness of each transfer module proposed in our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.