-This study aims to restrain free conducting wire-type particles which are commonly and dangerously existing within DC gas-insulated transmission lines. A realistic platform of a coaxial cylindrical electrode was established by using a high-speed camera and a partial discharge (PD) monitor to observe the motion, PD, and breakdown of these particles. The probabilities of standing or bouncing, which can be affected by the length of the particles, were also quantitatively examined. The corona images of the particles were recorded, and particle-triggered PD signals were monitored and extracted. Breakdown images were also obtained. The air-gap breakdown with the particles was subjected to mechanism analysis on the basis of stream theory. Results reveal that the lifting voltage of the wire particles is almost irrelevant to their length but is proportional to the square root of their radius. Short particles correspond to high bouncing probability. The intensity and frequency of PD and the micro-discharge gap increase as the length of the particles increases. The breakdown voltage decreases as the length of the particles decreases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.