Gastrointestinal stromal tumors (GISTs) are common neoplasms of the gastrointestinal tract that can be treated successfully using C-kit target therapy and surgery; however, imatinib chemoresistance is a major barrier to success in therapy. The present study aimed to discover alternative pathways in imatinib-resistant GISTs. Long noncoding RNAs (lncRNAs) are newly discovered regulators of chemoresistance. Previously, we showed that the lncRNA HOTAIR was upregulated in recurrent GISTs. In this study, we analyzed differentially expressed lncRNAs after imatinib treatment and found that HOTAIR displayed the largest increase. The distribution of HOTAIR in GISTs was shifted from nucleus to cytoplasm after imatinib treatments. The expression of HOTAIR was validated as related to drug sensitivity through Cell Counting Kit-8 assays. Moreover, HOTAIR was associated strongly with cell autophagy and regulated drug sensitivity via autophagy. Mechanistically, HOTAIR correlated negatively with miRNA-130a in GISTs. The downregulation of miRNA-130a reversed HOTAIR-small interfering RNA-induced suppression of autophagy and imatinib sensitivity. We identified autophagy-related protein 2 homolog B (ATG2B) as a downstream target of miR-130a and HOTAIR. ATG2B downregulation reversed the effect of pEX-3-HOTAIR/miR-130a inhibitor on imatinib sensitivity. Finally, HOTAIR was shown to influence the autophagy and imatinib sensitivity of GIST cells in mouse tumor models. Our results suggested that HOTAIR targets the ATG2B inhibitor miR-130a to upregulate the level of cell autophagy so that promotes the imatinib resistance in GISTs.
For ecologists, understanding the reaction of animals to environmental changes is critical. Using networked sensor technology to measure wildlife and environmental parameters can provide accurate, real-time and comprehensive data for monitoring, research and conservation of wildlife. This paper reviews: (i) conventional detection technology; (ii) concepts and applications of the Internet of Things (IoT) in animal ecology; and (iii) the advantages and disadvantages of IoT. The current theoretical limits of IoT in animal ecology are also discussed. Although IoT offers a new direction in animal ecological research, it still needs to be further explored and developed as a theoretical system and applied to the appropriate scientific frameworks for understanding animal ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.