Zika virus (ZIKV) has spread in many countries or territories causing severe neurologic complications with potential fatal outcomes. The small primate common marmosets are susceptible to ZIKV, mimicking key features of human infection. Here, a novel simian adenovirus type 23 vector-based vaccine expressing ZIKV pre-membrane-envelope proteins (Sad23L-prM-E) was produced in high infectious titer. Due to determination of immunogenicity in mice, a single-dose of 3×10 8 PFU Sad23L-prM-E vaccine was intramuscularly inoculated to marmosets. This vaccine raised antibody titers of 10 4.07 E-specific and 10 3.13 neutralizing antibody (NAb), as well as robust specific IFN-γ secreting T-cell response (1,219 SFCs/10 6 cells) to E peptides. The vaccinated marmosets, upon challenge with a high dose of ZIKV (10 5 PFU) six weeks post prime immunization, reduced viremia by more than 100 folds, and the low level of detectable viral RNA (<10 3 copies/ml) in blood, saliva, urine and feces was promptly eliminated when the secondary NAb (titer >10 3.66 ) and T-cell response (>726 SFCs/10 6 PBMCs) were acquired 1-2 weeks post exposure to ZIKV, while non-vaccinated control marmosets developed long-term high titer of ZIKV (10 5.73 copies/ml) (P<0.05). No significant pathological lesions were observed in marmoset tissues. Sad23L-prM-E vaccine was detectable in spleen, liver and PBMCs at least 4 months post challenge. In conclusion, a prime immunization with Sad23L-prM-E vaccine was able to protect marmosets against ZIKV infection when exposed to a high dose of ZIKV. This Sad23L-prM-E vaccine is a promising vaccine candidate for prevention of ZIKV infection in humans.
Common marmosets infected with GB virus-B (GBV-B) chimeras containing hepatitis C virus (HCV) core and envelope proteins (CE1E2p7) developed more severe hepatitis than those infected with HCV envelope proteins (E1E2p7), suggesting that HCV core protein might be involved in the pathogenesis of viral hepatitis. The potential role of HCV core in hepatic inflammation was investigated. Six individual cDNA libraries of liver tissues from HCV CE1E2p7 or E1E2p7 chimera-infected marmosets (three animals per group) were constructed and sequenced. By differential expression gene analysis, 30 of 632 mRNA transcripts were correlated with the immune system process, which might be associated with hepatitis. A protein-protein interaction network was constituted by STRING database based on these 30 differentially expressed genes (DEGs), showing that IL-32 might play a central regulatory role in HCV core-related hepatitis. To investigate the effect of HCV core protein on IL-32 production, HCV core expressing and mock constructs were transfected into Huh7 cells. IL-32 mRNA and secretion protein were detected at significantly higher levels in cells expressing HCV core protein than in those without HCV core expression (P < 0.01 and P < 0.001, respectively). By KEGG enrichment analysis and using the specific signaling pathway inhibitor LY294002 for inhibition of PI3K, IL-32 expression was significantly reduced (P < 0.001). In conclusion, HCV core protein induces an increase of IL-32 expression via the PI3K pathway in hepatic cells, which played a major role in development of HCV-related severe hepatitis.
The major mechanism for determination of HCV infection outcomes has not been fully described, particularly in the early phase of the “window-period” of infection. Based on two groups of marmosets infected with HCV-CE1E2p7/GBV-B chimeric virus (HCV chimera) or GBV-B, the immune mechanism correlating with the different outcomes of virus infections was explored in this study. HCV chimera containing the entire HCV core and envelope proteins (CE1E2p7) and GBV-B RNA were intrahepatically injected into four marmosets in each group, respectively. Blood samples were taken from individual animals in an interval of 2 weeks. Viral load and specific T cell responses were detected in two groups of HCV chimera- and GBV-B-infected marmosets. HCV chimera-infected marmosets appeared to have a virally persistent infection over 6 months post inoculation of the virus. Of these, the specific IFN-γ-secretion T cell response slowly developed over 13 to 19 weeks and was maintained at a relatively low level with 40–70 SFC/106 PBMCs, while the specific Treg cell response was rapidly activated over 3 weeks and was maintained at a high level around 5% among lymphocytes. In contrast, GBV-B-infected marmosets presented spontaneous viral clearance within 6 months; the specific IFN-γ-secretion T cell response was quickly established over 5 to 7 weeks and was maintained at a high level with 50–130 SFC/106 PBMCs, while the specific Treg cell response was inactivated and maintained at a baseline below 3% among lymphocytes. In conclusion, the HCV structural proteins inducing immune suppression in the early phase of HCV infection contributed to the viral persistence, of which the activation of Treg cells might play an important role in the inhibition of an effective T cell antiviral response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.