The growing demand for high performance from supercapacitors has inspired the development of porous nanocomposites using renewable and naturally available materials. In this work, a formaldehyde-free phenolic resin using monosaccharide-based furfural was synthesized to act as the carbon precursor. One dimensional halloysite nanotube (HNT) with high porosity and excellent cation/anion exchange capacity was mixed with the phenol-furfural resin to fabricate carbonaceous nanocomposite HNT/C. Their structure and porosity were characterized. The effects of the halloysite nanotube amount and carbonization temperature on the electrochemical properties of HNT/C were explored. HNT/C exhibited rich porosity, involving a large specific surface area 253 m2·g−1 with a total pore volume of 0.27 cm3·g−1. The electrochemical performance of HNT/C was characterized in the three-electrode system and showed enhanced specific capacitance of 146 F·g−1 at 0.2 A g−1 (68 F·g−1 for pristine carbon) in electrolyte (6 mol·L−1 KOH) and a good rate capability of 62% at 3 A g−1. It also displayed excellent cycle performance with capacitance retention of 98.5% after 500 cycles. The symmetric supercapacitors with HNT/C-1:1.5-800 electrodes were fabricated, exhibiting a high energy density of 20.28 Wh·Kg−1 at a power density of 100 W·Kg−1 in 1 M Na2SO4 electrolyte. The present work provides a feasible method for preparing composite electrode materials with a porous structure from renewable phenol-furfural resin and HNT. The excellent supercapacitance highlights the potential applications of HNT/C in energy storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.