The targeting range of CRISPR-Cas9 base editors (BEs) is limited by their G/C-rich protospacer-adjacent motif (PAM) sequences. To overcome this limitation, we developed a CRISPR-Cpf1-based BE by fusing the rat cytosine deaminase APOBEC1 to a catalytically inactive version of Lachnospiraceae bacterium Cpf1. The base editor recognizes a T-rich PAM sequence and catalyzes C-to-T conversion in human cells, while inducing low levels of indels, non-C-to-T substitutions and off-target editing.
BackgroundFOXO4, a member of the FOXO family of transcription factors, is currently the focus of intense study. Its role and function in gastric cancer have not been fully elucidated. The present study was aimed to investigate the expression profile of FOXO4 in gastric cancer and the effect of FOXO4 on cancer cell growth and metastasis.MethodsImmunohistochemistry, Western blotting and qRT-PCR were performed to detect the FOXO4 expression in gastric cancer cells and tissues. Cell biological assays, subcutaneous tumorigenicity and tail vein metastatic assay in combination with lentivirus construction were performed to detect the impact of FOXO4 to gastric cancer in proliferation and metastasis in vitro and in vivo. Confocal and qRT-PCR were performed to explore the mechanisms.ResultsWe found that the expression of FOXO4 was decreased significantly in most gastric cancer tissues and in various human gastric cancer cell lines. Up-regulating FOXO4 inhibited the growth and metastasis of gastric cancer cell lines in vitro and led to dramatic attenuation of tumor growth, and liver and lung metastasis in vivo, whereas down-regulating FOXO4 with specific siRNAs promoted the growth and metastasis of gastric cancer cell lines. Furthermore, we found that up-regulating FOXO4 could induce significant G1 arrest and S phase reduction and down-regulation of the expression of vimentin.ConclusionOur data suggest that loss of FOXO4 expression contributes to gastric cancer growth and metastasis, and it may serve as a potential therapeutic target for gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.