The standard GLM and GAM frequency-severity models assume independence between the claim frequency and severity. To overcome restrictions of linear or additive forms and to relax the independence assumption, we develop a data-driven dependent frequency-severity model, where we combine a stochastic gradient boosting algorithm and a profile likelihood approach to estimate parameters for both of the claim frequency and average claim severity distributions, and where we introduce the dependence between the claim frequency and severity by treating the claim frequency as a predictor in the regression model for the average claim severity. The model can flexibly capture the nonlinear relation between the claim frequency (severity) and predictors and complex interactions among predictors and can fully capture the nonlinear dependence between the claim frequency and severity. A simulation study shows excellent prediction performance of our model. Then, we demonstrate the application of our model with a French auto insurance claim data. The results show that our model is superior to other state-of-the-art models.
Contingent convertible bonds (CoCos) are typical form of contingent capital that converts into equity of issuing firm or writes down if a prespecified trigger occurs. This paper proposes a general Lévy framework for pricing CoCos. The Lévy framework indicates that the difficulty in giving closed-form expression for CoCos price is the possible introduction of the Lévy process whose first-passage time problem has not been solved. According to characteristics of new Lévy measure after the measure transform, three specific Lévy models driven by drifted Brownian motion, spectrally negative Lévy process, and double exponential jump diffusion process are proposed to give the solution keeping the form of the driving process unchanged under the measure transform. These three Lévy models provide closed-form expressions for CoCos price while the latter two possess them up to Laplace transform, whose pricing results are given by combining with numerical Fourier inversion and Laplace inversion. Numerical results show that negative jumps have large influence on CoCos pricing and the Black-Scholes model would overestimate CoCos price by simply compressing jumps information into volatility while the other two models would give more accurate CoCos price by taking jump risk into consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.