Chromosomal translocations of MLL1 (Mixed Lineage Leukemia 1) yield oncogenic chimeric proteins containing the N-terminal portion of MLL1 fused with distinct partners. The MLL1–AF10 fusion causes leukemia through recruiting the H3K79 histone methyltransferase DOT1L via AF10’s octapeptide and leucine zipper (OM-LZ) motifs. Yet, the precise interaction sites in DOT1L, detailed interaction modes between AF10 and DOT1L, and the functional configuration of MLL1–AF10 in leukeomogenesis remain unknown. Through a combined approach of structural and functional analyses, we found that the LZ domain of AF10 interacts with the coiled-coil domains of DOT1L through a conserved binding mode and discovered that the C-terminal end of the LZ domain and the OM domain of AF10 mediate the formation of a DOT1L–AF10 octamer via tetramerization of the binary complex. We reveal that the oligomerization ability of the DOT1L–AF10 complex is essential for MLL1–AF10’s leukemogenic function. These findings provide insights into the molecular basis of pathogenesis by MLL1 rearrangements.
Highlights d The crystal structure of EPC1 bound to MBTD1 is determined d MBTD1 employs two distinct regions to recognize H4K20me and EPC1 d Mutations at the MBTD1-EPC1 interface affect gene expression and DNA repair
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.