Innate immune cells, especially macrophages, play a dual role in tissue repair and the defense against foreign bodies. Although biphasic calcium phosphate (BCP) ceramics have been confirmed as an excellent osteoimmunoregulatory biomaterial, it is unclear whether the ions release of BCP directly affects macrophage polarization and the mechanism by which the ions release is involved in osteoimmunomodulation. Herein, we verified the superior osteoinductive capacity of BCP in wild‐type mice and showed its inability to promote this process in macrophage‐deficient (LysM−/−) mice. Moreover, scanning electron microscopy, ion release curve, and calcein AM‐staining results confirmed that BCP‐released Ca2+ in a sustained manner, thereby maintaining the long‐term induction of M2 macrophage polarization and promoting the differentiation of mesenchymal stem cells into osteoblasts during osteogenesis. Furthermore, Ca2+ targeted the Wnt/β‐catenin signaling pathway and activated Arg1 and IL‐10 (M2 marker genes) transcription through the calcium‐sensing receptor (CaSR) in macrophages. Under treatment with a CaSR antagonist, macrophages cultured with the BCP fluid extract exhibited lower Ca2+ intake and weaker M2 macrophage polarization. These findings underscore the critical role of macrophages in bone regeneration and clarify the molecular mechanisms of Ca2+‐mediated osteoinduction by biomaterials, which is of great significance for the future design of biomaterial‐oriented tissue regeneration engineering.
Chondrocytes are well adapted to hypoxia and produce more functional extracellular matrix in low oxygen environments in vitro . In our previous study, methyltransferase SET domain containing (SETD)7 regulated chondrocyte activity in hypoxic conditions. However, the precise association between SETD7 and chondrocyte differentiation under low oxygen partial pressure remains unclear. The association between SETD7 and chondrocyte differentiation was studied by silencing SETD7 in chondrocytes in vitro . The results showed that the silencing of SETD7 in ATDC5 cells inhibited the Hippo signaling pathway, decreased Yes-associated protein (YAP) phosphorylation and increased the levels of YAP and hypoxia inducible factor-1α (HIF-1α) in the nucleus. YAP combined with HIF-1α to form a complex that promoted the expression of genes involved in chondrogenic differentiation and the glycolytic pathway. Thus, SETD7 inhibited chondrocyte differentiation and glycolysis via the Hippo signaling pathway. The present study demonstrated that SETD7 was a potential molecular target that maintained the chondrocyte phenotype during cartilage tissue engineering and cartilage-associated disease.
Macrophages have been found to regulate the effects of biomaterials throughout the entire tissue repair process as an antigen-presenting cell. As a well-defined osteoconductive biomaterial for bone defect regeneration, tricalcium phosphate (TCP) has been found to facilitate a favourable osteoimmunomodulatory response that can shift macrophage polarization towards the M2 phenotype. In the present study, our group discovered that a histone methyltransferase enhancer of zeste1 (EZH1) was drastically downregulated in Thp1 cells stimulated by TCP, indicating that EZH1 may participate in the macrophage phenotype shifting. Furthermore, the NF-κB pathway in macrophages was significantly downregulated through stimulation of TCP, suggesting a potential interaction between EZH1 and the NF-κB pathway. Utilizing gene knock-down therapy in macrophages, it was found that depletion of EZH1 induced M2 macrophage polarization but did not downregulate NF-κB. When the NF-κB pathway was inhibited, the expression of EZH1 was significantly downregulated, suggesting that the inhibition of EZH1 may be regulated by the NF-κB pathway. These novel findings provide valuable insights into a potential gene target system that controls M2 macrophage polarization which ultimately favours a microenvironment suitable for bone repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.