Personalized recommendation on new track releases has always been a challenging problem in the music industry. To combat this problem, we first explore user listening history and demographics to construct a user embedding representing the user's music preference. With the user embedding and audio data from user's liked and disliked tracks, an audio embedding can be obtained for each track using metric learning with Siamese networks. For a new track, we can decide the best group of users to recommend by computing the similarity between the track's audio embedding and different user embeddings, respectively. The proposed system yields state-of-the-art performance on content-based music recommendation tested with millions of users and tracks. Also, we extract audio embeddings as features for music genre classification tasks. The results show the generalization ability of our audio embeddings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.