Success in making artificial muscles that are faster and more powerful and that provide larger strokes would expand their applications. Electrochemical carbon nanotube yarn muscles are of special interest because of their relatively high energy conversion efficiencies. However, they are bipolar, meaning that they do not monotonically expand or contract over the available potential range. This limits muscle stroke and work capacity. Here, we describe unipolar stroke carbon nanotube yarn muscles in which muscle stroke changes between extreme potentials are additive and muscle stroke substantially increases with increasing potential scan rate. The normal decrease in stroke with increasing scan rate is overwhelmed by a notable increase in effective ion size. Enhanced muscle strokes, contractile work-per-cycle, contractile power densities, and energy conversion efficiencies are obtained for unipolar muscles.
Acute kidney injury (AKI), associated with significant morbidity and mortality, is widely known to involve epithelial apoptosis, excessive inflammation, and fibrosis in response to ischemia or reperfusion injury, which results in either chronic pathological changes or death. Therefore, it is imperative that investigations are conducted in order to fi nd effective, early diagnoses, and therapeutic targets needed to help prevent and treat AKI. However, the mechanisms modulating the pathogenesis of AKI still remain largely undetermined. MicroRNAs (miRNAs), small noncoding RNA molecules, play an important role in several fundamental biological and pathological processes by a post transcriptional regulatory function of gene expression. MicroRNA-21 (miR-21) is a recently identifi ed, typical miRNA that is functional as a regulator known to be involved in apoptosis as well as inflammatory and fi brotic signaling pathways in AKI. As a result, miR-21 is now considered a novel biomarker when diagnosing and treating AKI. This article reviews the correlative literature and research progress regarding the roles of miR-21 in AKI.
Panax notoginseng, a traditional Chinese medicine, has been used for thousands of years to treat ischemic patients. More than 20 saponin components have been isolated from P. notoginseng root and identified chemically. However, these different chemical components have different roles. In this study we compared the neuroprotective mechanisms of ginsenosides Rg1, Rb1, Rg1/Rb1, and panax notoginsenoside (PNS) against injuries caused by cerebral ischemia-reperfusion (I/R). Our results show that all of these treatments significantly reduced infarction volume and alleviated neurological deficits caused by cerebral I/R. The increase in malondialdehyde (MDA) concentration was inhibited by these treatments in the hippocampus. The decreased expressions of thioredoxin-1 (Trx-1), copper-zinc superoxide dismutase (SOD-1), protein kinase B (PKB/Akt), and nuclear factor-kappa B (NF-κB) caused by cerebral I/R were restored by these treatments. The expression of heat shock protein 70 (HSP70) was enhanced in the middle cerebral artery occlusion (MCAO) group, as well as in all of the treatment groups. These results suggest that Rg1 and Rb1 have similar roles in protecting the brain from ischemic damage; however, neither Rg1/Rb1 nor PNS have synergistic effects, thus either Rg1 or the Rb1 monomer should be considered as a pharmacological neuroprotective strategy for use in the case of ischemic stroke.
Background Dopamine and dopamine receptor D1 (DRD1), a member of the dopamine receptor family, have been indicated to play important roles in cancer progression, but dopamine secretion in hepatocellular carcinoma (HCC) and the effects of DRD1 on HCC remain unclear. This study was designed to explore the contribution of the dopaminergic system to HCC and determine the relationship between DRD1 and prognosis in HCC patients. Methods The dopamine metabolic system was monitored using enzyme‐linked immunosorbent assays (ELISAs). The expression of DRD1 was detected by microarray analysis, immunohistochemistry (IHC), and quantitative real‐time PCR (qRT‐PCR). Stable DRD1 knockout and overexpression cell lines were established for investigation. Transwell, colony formation, and Cell Counting Kit 8 (CCK8) assays were performed to assess the malignant behaviors of cancer cells. The cAMP/PI3K/AKT/ cAMP response element‐binding (CREB) signaling pathway was evaluated by Western blot. This pathway, which is agitated by DRD1 in striatal neurons, had been proven to participate in tumor progression. Xenograft HCC tumors were generated for in vivo experiments. Results Dopamine secretion increased locally in HCC due to an imbalance in dopamine metabolism, including the upregulation of dopa decarboxylase (DDC) and the downregulation of monoamine oxidase A (MAOA). Dopamine promoted the proliferation and metastasis of HCC. DRD1 was highly expressed in HCC tissues and positive DRD1 expression was related to a poor prognosis in HCC patients. The upregulation of DRD1 agitated malignant activities, including proliferation and metastasis in HCC by regulating the cAMP/PI3K/AKT/CREB pathway, and the downregulation of DRD1 had opposing effects. The effects of dopamine on HCC was reversed by depleting DRD1. SCH23390, a selective DRD1 antagonist, inhibited the proliferation and metastasis of HCC cells both in vitro and in vivo. Conclusion Dopamine secretion was locally increased in HCC and promoted HCC cell proliferation and metastasis. DRD1 was found to exert positive effects on HCC progression and play a vital role in the dopamine system, and could be a potential therapeutic target and prognostic biomarker for HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.