With the increasing greenhouse effect, high temperature has become the most unfavorable environmental factor for the rice grain filling process, affecting rice yield and quality mainly through changing the composition and structure of starch in rice grains. Research has focused on the rational management of water and fertilizer, and spraying of exogenous chemicals, which have become important measures to alleviate high temperature stress of rice. As a multifunctional molecule, melatonin has the potential to improve plant stress resistance by enhancing the scavenging efficiency of reactive oxygen species (ROS), thus protecting plants from the adverse effects of abiotic stress. The present study used a typical japonica rice variety Nipponbare (NPB) as the experimental material, which was treated with high temperature and melatonin during grain-filling stages. The effects of exogenous melatonin on the rice growth and quality traits, as well as starch synthesis, in response to high temperature were analyzed systematically. Exogenous melatonin significantly increased the rice leaf photosynthetic and heat-resistance properties. Melatonin could alleviate the effects of high temperature on the key physicochemical properties related to rice quality. Furthermore, milled rice from NPB plants treated with melatonin had better endosperm appearance under high temperature. Further study found that exogenous melatonin could stabilize the chain length distribution of starch in NPB (especially amylopectin), which implied that melatonin could be used in rice cultivation to alleviate the effect of high temperature on quality, optimization of amylopectin synthesis can also improve rice quality. The results of the present study provide a new idea and research direction to alleviate high temperature stress of rice in the context of global warming.
Climate warming affects rice growth at different phenological stages, thereby increasing rice chalkiness and protein content and reducing eating and cooking quality (ECQ). The structural and physicochemical properties of rice starch played important roles in determining rice quality. However, differences in their response to high temperature during the reproductive stage have been rarely studied. In the present study, they were evaluated and compared between two contrasting natural temperature field conditions, namely, high seasonal temperature (HST) and low seasonal temperature (LST), during the reproductive stage of rice in 2017 and 2018. Compared with LST, HST significantly deteriorated rice quality, including increased grain chalkiness, setback, consistence, and pasting temperature and reduced taste values. HST considerably reduced the total starch and increased the protein content. Likewise, HST significantly reduced the short amylopectin chains [degree of polymerization (DP) <12] and increased the long amylopectin chains (DP > 12) and relative crystallinity. The starch structure, total starch content, and protein content explained 91.4%, 90.4%, and 89.2% of the total variations in pasting properties, taste value, and grain chalkiness degree, respectively. In conclusion, we suggested that rice quality variations were closely associated with the changes in chemical composition content (total starch and protein content) and starch structure in response to HST. These results indicated that we should improve the resistance of rice to high temperature during the reproductive stage to improve the fine structure of rice starch in further breeding and practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.