This paper presents a method for improved automatic delineation of dendrites and spines from threedimensional (3-D) images of neurons acquired by confocal or multi-photon fluorescence microscopy. The core advance presented here is a direct grayscale skeletonization algorithm that is constrained by a structural complexity penalty using the minimum description length (MDL) principle, and additional neuroanatomy-specific constraints. The 3-D skeleton is extracted directly from the grayscale image data, avoiding errors introduced by image binarization. The MDL method achieves a practical tradeoff between the complexity of the skeleton and its coverage of the fluorescence signal. Additional advances include the use of 3-D spline smoothing of dendrites to improve spine detection, and graph-theoretic algorithms to explore and extract the dendritic structure from the grayscale skeleton using an intensity-weighted minimum spanning tree (IW-MST) algorithm. This algorithm was evaluated on 30 datasets organized in 8 groups from multiple laboratories. Spines were detected with false negative rates less than 10% on most datasets (the average is 7.1%), and the average false positive rate was 11.8%. The software is available in open source form.
As a data augmentation method, masking word is commonly used in many natural language processing tasks. However, most mask methods are based on rules and are not related to downstream tasks. In this paper, we propose a novel masking word generator, named Actor-Critic Mask Model (ACMM), which can adaptively adjust the mask strategy according to the performance of downstream tasks. In order to demonstrate the effectiveness of the method, we conducted experiments on two causal event extraction datasets. Experiment results show that, compared with various rule-based masking methods, the masked sentences generated by our proposed method can significantly enhance the generalization of the model and improve the model performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.