Chemokine receptor CX3CR1+ dendritic cells (DCs) have been suggested to sample intestinal antigens by extending transepithelial dendrites into the gut lumen. Other studies identified CD103+ DCs in the mucosa, which, through their ability to synthesize retinoic acid (RA), appear to be capable of generating typical signatures of intestinal adaptive immune responses. We report that CD103 and CX3CR1 phenotypically and functionally characterize distinct subsets of lamina propria cells. In contrast to CD103+ DC, CX3CR1+ cells represent a nonmigratory gut-resident population with slow turnover rates and poor responses to FLT-3L and granulocyte/macrophage colony-stimulating factor. Direct visualization of cells in lymph vessels and flow cytometry of mouse intestinal lymph revealed that CD103+ DCs, but not CX3CR1-expressing cells, migrate into the gut draining mesenteric lymph nodes (LNs) under steady-state and inflammatory conditions. Moreover, CX3CR1+ cells displayed poor T cell stimulatory capacity in vitro and in vivo after direct injection of cells into intestinal lymphatics and appeared to be less efficient at generating RA compared with CD103+ DC. These findings indicate that selectively CD103+ DCs serve classical DC functions and initiate adaptive immune responses in local LNs, whereas CX3CR1+ populations might modulate immune responses directly in the mucosa and serve as first line barrier against invading enteropathogens.
Deficiency of transplant recipients for the chemokine receptor CCR7 was originally described to slightly increase the survival time of vascularized solid organ grafts, probably due to a reduced priming of alloreactive T cells. Using a model of allotolerance induction by donorspecific splenocyte transfusion (DST) in combination with anti-CD40L mAb-mediated costimulation blockade (CSB), we show here a striking failure of CCR7-deficient (CCR7 À/À ) recipients to tolerate cardiac allografts. Furthermore, in addition to the recently described lack of Treg, CCR7À/À mice were found to harbor significantly reduced numbers of plasmacytoid dendritic cells (pDCs) within peripheral as well as mesenteric lymph nodes (LNs), but not the bone marrow or spleen. pDCs had previously been suggested to function as tolerogenic APC during allograft transplantation, and a single transfer of syngeneic WT pDCs, but not conventional DCs, was indeed sufficient to rescue graft survival in DST1CSB-treated CCR7 À/À recipients in a dose-dependent manner. We therefore conclude that the nearly complete absence of pDCs within LNs of CCR7 À/À mice prevents the successful induction of DST1CSB-mediated allotolerance, leading to the observed acute rejection of cardiac allografts under tolerizing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.