Currently video streaming in heterogeneous network environments is affected by limited network bandwidth availability and consequent low and variable user Quality of Experience (QoE) levels. In particular, for the case of live video streaming, a very high number of end-clients request content at the same time, generating huge concurrent traffic, and putting pressure on the existing network infrastructure. An approach which helps address this issue is deployment of emerging edge computing technologies to smooth the live streaming traffic and improve QoE by adapting client bitrates and caching content at the edge server. In this context, this paper proposes a novel QoE-aware Adaptive Video bitrate Aggregation scheme for HTTP live streaming based on smart edge computing (QAVA). As an intelligent proxy server, a "smart edge" which deploys QAVA aggregates all the traffic requested by clients for the same live streaming service and adapts their bitrates based on network conditions, client states and video characteristics. The adaptation is performed based on a Deep Reinforcement Learning (DRL)-based algorithm, which is also proposed. The QAVA DRL algorithm is trained and modeled based on a real client experience dataset. The experimental evaluation results presented in this paper show how QAVA outperforms
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.