Satellite Internet of Things (S-IoT), which integrates satellite networks with IoT, is a new mobile Internet to provide services for social networks. However, affected by the dynamic changes of topology structure and node status, the efficient and secure forwarding of data packets in S-IoT is challenging. In view of the abovementioned problem, this paper proposes an adaptive routing strategy based on improved double Q-learning for S-IoT. First, the whole S-IoT is regarded as a reinforcement learning environment, and satellite nodes and ground nodes in S-IoT are both regarded as intelligent agents. Each node in the S-IoT maintains two Q tables, which are used for selecting the forwarding node and for evaluating the forwarding value, respectively. In addition, the next hop node of data packets is determined depending on the mixed Q value. Second, in order to optimize the Q value, this paper makes improvements on the mixed Q value, the reward value, and the discount factor, respectively, based on the congestion degree, the hop count, and the node status. Finally, we perform extensive simulations to evaluate the performance of this adaptive routing strategy in terms of delivery rate, average delay, and overhead ratio. Evaluation results demonstrate that the proposed strategy can achieve more efficient and secure routing in the highly dynamic environment compared with the state-of-the-art strategies.
Target detection is the basic technology of self-driving system. In this paper, the problem of high detection rate of pedestrians and other small targets is studied in real-time detection of Tiny YOLOV3 target detection algorithm, and the network structure of Tiny YOLOV3 algorithm is improved. 2-step convolutional layers are added to the network, and deep separable convolution constructs are used to replace the traditional convolutions. On the basis of the original two-scales prediction target of the network, a scale is added to form a three-scales prediction, which can makes the detection of small targets such as pedestrians more accurate. The experimental results show that the average accuracy of the improved target detection algorithm is 8.6% higher than that of Tiny YOLOV3, and it meets the real-time requirements and has certain robustness.
In highway management, the prediction of the routine maintenance cost of tunnels is an important issue in saving tunnel maintenance costs due to its uncertainty, and the influencing factors should be carefully selected because too many variables could not be involved in the model. The complicated relationship between variables may lead to the inconsistency of model coefficients with the actual situation even though the goodness of fit of the model constructed with more variables is higher. This paper presents an approach in which quantitative analysis is combined with qualitative analysis to quickly select the independent variables of the tunnel routine maintenance cost (TMC) model. Based on the routine maintenance data collection of nine highway tunnels in Shaanxi province from 2007 to 2016, the independent variables of the models are determined with one-way ANOVA, Pearson correlation, partial correlation, and hierarchical regression. Afterwards, a fixed-effect regression model which can reflect the overall regional features is developed. Results show that tunnel age (Age) and tunnel length proportion (PET) have less effect on TMC among the main influencing factors such as district, Age, annual average daily traffic volume (AADT), truck traffic volume proportion (PTT), PET, and number of ventilation facilities (NVF), while the NVF makes a positive contribution to the TMC. Compared with grouped regression models, the fixed-effect regression model has higher fitting accuracy and a better regression coefficient significance. The quick independent variable selection method can shorten the time of establishing the model and determine the influencing factors of the research object effectively. The established model is suitable for forecasting the TMC and budget arrangement. In addition, the elastic analysis results of regression coefficients are helpful to the decision of maintenance strategy and the allocation of maintenance funds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.