The visual simultaneous localization and mapping (SLAM) method under dynamic environments is a hot and challenging issue in the robotic field. The oriented FAST and Rotated BRIEF (ORB) SLAM algorithm is one of the most effective methods. However, the traditional ORB-SLAM algorithm cannot perform well in dynamic environments due to the feature points of dynamic map points at different timestamps being incorrectly matched. To deal with this problem, an improved visual SLAM method built on ORB-SLAM3 is proposed in this paper. In the proposed method, an improved new map points screening strategy and the repeated exiting map points elimination strategy are presented and combined to identify obvious dynamic map points. Then, a concept of map point reliability is introduced in the ORB-SLAM3 framework. Based on the proposed reliability calculation of the map points, a multi-period check strategy is used to identify the unobvious dynamic map points, which can further deal with the dynamic problem in visual SLAM, for those unobvious dynamic objects. Finally, various experiments are conducted on the challenging dynamic sequences of the TUM RGB-D dataset to evaluate the performance of our visual SLAM method. The experimental results demonstrate that our SLAM method can run at an average time of 17.51 ms per frame. Compared with ORB-SLAM3, the average RMSE of the absolute trajectory error (ATE) of the proposed method in nine dynamic sequences of the TUM RGB-D dataset can be reduced by 63.31%. Compared with the real-time dynamic SLAM methods, the proposed method can obtain state-of-the-art performance. The results prove that the proposed method is a real-time visual SLAM, which is effective in dynamic environments.
Autonomous localization and navigation, as an essential research area in robotics, has a broad scope of applications in various scenarios. To widen the utilization environment and augment domain expertise, simultaneous localization and mapping (SLAM) in underwater environments has recently become a popular topic for researchers. This paper examines the key SLAM technologies for underwater vehicles and provides an in-depth discussion on the research background, existing methods, challenges, application domains, and future trends of underwater SLAM. It is not only a comprehensive literature review on underwater SLAM, but also a systematic introduction to the theoretical framework of underwater SLAM. The aim of this paper is to assist researchers in gaining a better understanding of the system structure and development status of underwater SLAM, and to provide a feasible approach to tackle the underwater SLAM problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.