Correct guidance of the migration of neural progenitor cells (NPCs) is essential for the development and repair of the central nervous system (CNS). Electric field (EF)-guided migration, electrotaxis, has been observed in many cell types. We report here that, in applied EFs of physiological magnitude, embryonic and adult NPCs show marked electrotaxis, which is dependent on the PI3K/Akt pathway. The electrotaxis was also evidenced by ex vivo investigation that transplanted NPCs migrated directionally towards cathode in organotypic spinal cord slice model when treated with EFs. Genetic disruption or pharmacological inhibition of phosphoinositide 3-kinase (PI3K) impaired electrotaxis, whereas EF exposure increased Akt phosphorylation in a growth factor-dependent manner and increased phosphatidylinositol-3,4,5-trisphosphate (PIP3) levels. EF treatments also induced asymmetric redistribution of PIP3, growth factor receptors, and actin cytoskeleton. Electrotaxis in both embryonic and adult NPCs requires epidermal growth factor (EGF) and fibroblast growth factor (FGF). Our results demonstrate the importance of the PI3K/Akt pathway in directed migration of NPCs driven by EFs and growth factors and highlight the potential of EFs to enhance the guidance of various NPC populations in CNS repair therapies.
Site-specific modification of peptides and proteins has wide applications in probing and perturbing biological systems. Herein we report that 1,2-aminothiol can react rapidly, specifically and efficiently with 2-((alkylthio)(aryl)methylene)malononitrile (TAMM) under biocompatible conditions. This reaction undergoes a unique mechanism involving thiol-vinyl sulfide exchange, cyclization and elimination of dicyanomethanide to form 2-aryl-4,5-dihydrothiazole (ADT) as a stable product. An 1,2-aminothiol functionality can be introduced into a peptide or a protein as an N-terminal cysteine or an unnatural amino acid. The bioorthogonality of this reaction was demonstrated by site-specific labeling of not only synthetic peptides and a purified recombinant protein but also proteins on mammalian cells and phages. Unlike other reagents in bioorthogonal reactions, the chemical and physical properties of TAMM can be easily tuned. TAMM can also be applied to generate phage-based cyclic peptide libraries without reducing phage infectivity. Using this approach, we identified ADT-cyclic peptides with high affinity to different protein targets, providing valuable tools for biological studies and potential therapeutics. Furthermore, the mild reaction condition of TAMM condensation warrants its use with other bioorthogonal reactions to simultaneously achieve multiple site-specific modifications.
Neural stem cells (NSCs) exhibit features that make them suitable candidates for stem cell replacement therapy and spinal cord reconstruction. Magnetic resonance imaging (MRI) offers the potential to track cells in vivo using innovative approaches to cell labeling and image acquisition. In this study, experiments were carried out to optimize the loading condition of magnetic CoPt hollow nanoparticles (CoPt NPs) into neural stem cells and to define appropriate MRI parameters. Both cell viability and multipotency analysis showed that CoPt NPs at a concentration of 16 µg ml(-1) reduced T2 relaxation times in labeled rat NSCs, producing greater contrast on spin echo acquisitions at 4.7 T, yet did not affect cell viability and in vitro differentiation potential compared to controls. After optimizing nanoparticle loading concentrations and labeled cell numbers for MRI detection, CoPt-loaded NSCs were transplanted into organotypic spinal cord slices. The results showed that MRI could efficiently detect low numbers of CoPt-labeled NSCs with the enhanced image contrast. Our study demonstrated that MRI of grafted NSCs labeled with CoPt NPs is a useful tool to evaluate organotypic spinal cord slice models and has potential applications in other biological systems.
Copyright: Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Cerebrovascular disease such as stroke is one of the most common diseases in the aging population, and neural stem cells (NSCs) transplantation may provide an alternative therapy for cerebral ischemia. However, a hostile microenvironment in the ischemic brain offers is challenging for the survival of the transplanted cells. Considering the neuroprotective role of basic fibroblast growth factor (bFGF), the present study investigated whether bFGF gene-modified NSCs could improve the neurological function deficit after transient middle cerebral artery occlusion (MCAO) in adult male Sprague-Dawley rats. These rats were intravenously injected with modified NSCs (5×10 6 /200 μL) or vehicle 24 h after MCAO. Histological analysis was performed on days 7 and 28 after tMCAO. The survival, migration, proliferation, and differentiation of the transplanted modified C17.2 cells in the brain were improved. In addition, the intravenous infusion of NSCs and bFGF gene-modified C17.2 cells improved the functional recovery as compared to the control. Furthermore, bFGF promoted the C17.2 cell growth, survival, and differentiation into mature neurons within the infarct region. These data suggested that bFGF gene-modified NSCs have the potential to be a therapeutic agent in brain ischemia. www.impactjournals.com/oncotarget/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.