An obstacle detection method based on VM (VIDAR and machine learning joint detection model) is proposed to improve the monocular vision system's identification accuracy. When VIDAR (Vision-IMU-based detection and range method) detects unknown obstacles in a reflective environment, the reflections of the obstacles are identified as obstacles, reducing the accuracy of obstacle identification. We proposed an obstacle detection method called improved VM to avoid this situation. The experimental results demonstrated that the improved VM could identify and eliminate unknown obstacles. Compared with more advanced detection methods, the improved VM obstacle detection method is more accurate. It can detect unknown obstacles in reflection, reflective road environments.
Environmental perception systems can provide information on the environment around a vehicle, which is key to active vehicle safety systems. However, these systems underperform in cases of sloped roads. Real-time obstacle detection using monocular vision is a challenging problem in this situation. In this study, an obstacle detection and distance measurement method for sloped roads based on Vision-IMU based detection and range method (VIDAR) is proposed. First, the road images are collected and processed. Then, the road distance and slope information provided by a digital map is input into the VIDAR to detect and eliminate false obstacles (i.e., those for which no height can be calculated). The movement state of the obstacle is determined by tracking its lowest point. Finally, experimental analysis is carried out through simulation and real-vehicle experiments. The results show that the proposed method has higher detection accuracy than YOLO v5s in a sloped road environment and is not susceptible to interference from false obstacles. The most prominent contribution of this research work is to describe a sloped road obstacle detection method, which is capable of detecting all types of obstacles without prior knowledge to meet the needs of real-time and accurate detection of slope road obstacles.
The existing automatic parking algorithms often neglect the unknown obstacles in the parking environment, which causes a hidden danger to the safety of the automatic parking system. Therefore, this paper proposes parking space detection and path planning based on the VIDAR method (vision-IMU-based detection and range method) to solve the problem. In the parking space detection stage, the generalized obstacles are detected based on VIDAR to determine the obstacle areas, and then parking lines are detected by the Hough transform to determine the empty parking space. Compared with the parking detection method based on YOLO v5, the experimental results demonstrate that the proposed method has higher accuracy in complex parking environments with unknown obstacles. In the path planning stage, the path optimization algorithm of the A ∗ algorithm combined with the Bezier curve is used to generate smooth curves, and the environmental information is updated in real time based on VIDAR. The simulation results show that the method can make the vehicle efficiently avoid the obstacles and generate a smooth path in a dynamic parking environment, which can well meet the safety and stationarity of the parking requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.