Background and Aim DNA hypermethylation has emerged as a novel molecular biomarker for the diagnosis and prognosis prediction of many cancers. We aimed to identify clinically useful biomarkers regulated by DNA methylation in hepatocellular carcinoma (HCC). Methods Genome‐wide methylation analysis in HCCs and paired noncancerous tissues was performed using an Illumina Infinium HumanMethylation 450K BeadChip array. Methylation‐specific polymerase chain reaction and pyrosequencing were used to validate the methylation status of selected genes in 100 paired HCCs and noncancerous samples. Results A total of 97 027 (20.0%) out of 485 577 CpG sites significantly were differed between HCC and noncancerous tissues. Among all the significant CpG sites, 48.8% are hypermethylated and 51.2% are hypomethylated in HCCs. Multiple signaling pathways (AMP‐activated protein kinase, estrogen, and adipocytokine) involved in gene methylation were identified in HCC. FES was selected for further analysis based on its high level of methylation confirmed by polymerase chain reaction and pyrosequencing. The result showed that FES hypermethylation was correlated with tumor size (0.001), serum alpha fetoprotein (0.023), and tumor differentiation (0.006). FES protein was significantly downregulated in 51/100 (51%) HCCs, and 94.12% (48/51) of them were due to promoter hypermethylation. Both FES hypermethylation and protein downregulation were associated with the progression‐free survival and overall survival of HCC patients. Overexpressed and knockdown of FES confirmed its inhibitory effect on the proliferation and migration of HCC cells. Conclusions We identified many new differentially methylated CpGs in HCCs and demonstrate that FES functions as a tumor suppressor gene in HCC and its methylation status could be used as an indicator for prognosis of HCC.
Cyclin-dependent kinase subunit (CKS) 2 is a member of the CKS family, which plays an important role in the regulation of meiosis and mitosis. Overexpression of CKS2 has been reported in several types of tumors. However, few studies have investigated its role in uterine leiomyosarcoma (ULMS). In the present study, the expression of CKS2 in 38 cases of ULMS and 38 cases of uterine leiomyoma (ULM) was analyzed by immunohistochemistry. Moreover, the functional analysis of CKS2 was performed in ULMS cell lines. A significantly higher expression of CKS2 was found in ULMS tissues than in ULM tissues (P<0.01) and high CKS2 expression was associated with increased tumor size, low progesterone receptor expression and poor prognosis in patients with ULMS. Multivariate Cox regression analysis revealed that CKS2 expression status was an independent predictor of overall survival for ULMS. Furthermore, silencing of CKS2 in ULMS cells inhibited cell proliferation, colony formation, migration and invasion, and resulted in cell cycle arrest. In conclusion, the present study demonstrated that CKS2 may serve as a marker for the differential diagnosis of ULMS and ULM. In addition, it may act as an independent prognostic factor in patients with ULMS, and serve as a novel target for ULMS therapy.
The rapid alkalinization factor (RALF) gene family is essential for the plant growth and development. However, there is little known about these genes among Rosaceae species. Here, we identify 124 RALF-like genes from seven Rosaceae species, and 39 genes from Arabidopsis, totally 163 genes, divided into four clades according to the phylogenetic analysis, which includes 45 mature RALF genes from Rosaceae species. The YISY motif and RRXL cleavage site are typical features of true RALF genes, but some variants were detected in our study, such as YISP, YIST, NISY, YINY, YIGY, YVGY, FIGY, YIAY, and RRVM. Motif1 is widely distributed among all the clades. According to screening of cis-regulatory elements, GO annotation, expression sequence tags (EST), RNA-seq, and RT-qPCR, we reported that 24 RALF genes coding mature proteins related to tissue development, fungal infection, and hormone response. Purifying selection may play an important role in the evolutionary process of RALF-like genes among Rosaceae species according to the result from ka/ks. The tandem duplication event just occurs in four gene pairs (Fv-RALF9 and Fv-RALF10, Md-RALF7 and Md-RALF8, Pm-RALF2 and Pm-RALF8, and Pp-RALF11 and Pp-RALF14) from four Rosaceae species. Our research provides a wide overview of RALF-like genes in seven Rosaceae species involved in identification, classification, structure, expression, and evolution analysis.
Protein arginine methyltransferase 5 (PRMT5) has previously been reported to be upregulated in many malignant tumors. This study investigated the significance of PRMT5 in endometrial carcinoma (EC) and explored its function in tumorigenesis. Immunohistochemistry was performed to evaluate PRMT5 expression in 62 EC and 66 endometrial hyperplasia samples. The functions of PRMT5 were investigated by cell counting kit‐8, plate colony formation, wound healing, and transwell and flow cytometry assays. Quantitative reverse transcription‐polymerase chain reaction and western blotting were used to measure the expression of PRMT5, changes in estrogen receptor α (ERα), and related functional proteins. Coimmunoprecipitation was performed to examine the interaction of PRMT5 with ERα and its coactivator steroid receptor coactivator‐1 (SRC1). Compared to endometrial hyperplasia tissue, PRMT5 was overexpressed in endometrioid adenocarcinoma (EAC) but not overexpressed in mucinous EC. The main expression pattern of PRMT5 in EAC was cytoplasmic. However, the positive cases of endometrial hyperplasia showed both cytoplasmic and nuclear positivity in the endometrial glands or were mainly positive in stromal cells. Knockdown of PRMT5 significantly inhibited the growth and migration ability of EAC cells and promoted their apoptosis by regulating cyclin D1, c‐myc, p53, and Bcl2 proteins. Furthermore, PRMT5 could form a complex with ERα and SRC1 to promote the expression of ERα. In conclusion, PRMT5 plays a significant role in the progression of EAC by interacting with ERα and impacting the cell cycle signaling pathways.
Purpose: Squamous cell carcinomas and adenocarcinomas are the most common types of cervical cancer. Compared to squamous cell carcinomas, adenocarcinomas are more common in younger women and have a poorer prognosis. Yet, so far, no useful biomarkers have been developed for these two types of cancer. In the following study, we examined the combination of cytokeratin 5/6, p63, p40 and MUC5AC for distinguishing squamous cell carcinoma (SCC) from adenocarcinoma of the cervix (AEC). Materials and methods: A total of 101 SCC and 108 AEC were collected. Immunohistochemical analyses were conducted to determine the expression of CK5/6, p63, p40, CK7 and MUC5AC. One pathologist who was blinded to the patient's clinical and pathological data interpreted the staining results. Results: MUC5AC and CK7 were detected in 81.48 and 82.41% of AEC cases compared to 9.9 and 49.50% of SCC cases (P < 0.05); the specificity of MUC5AC was higher than that of CK7 in AEC (P < 0.05). The sensitivity of MUC5AC combined with p40 or p63 was similar to that of CK7, but the specificity was slightly higher than that of CK7 in AEC. Moreover, the expression of MUC5AC was correlated with the degree of tumor differentiation in adenocarcinomas (P = 0.036) and was not related to the prognosis of cervical adenocarcinoma and subtypes. Conclusions: MUC5AC may be useful as a biomarker for differential diagnoses between squamous carcinoma and adenocarcinoma of the cervix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.