In this study, the use of a popular deep reinforcement learning algorithm – deep Q-learning – in developing end-to-end control policies for robotic swarms is explored. Robots only have limited local sensory capabilities; however, in a swarm, they can accomplish collective tasks beyond the capability of a single robot. Compared with most automatic design approaches proposed so far, which belong to the field of evolutionary robotics, deep reinforcement learning techniques provide two advantages: (i) they enable researchers to develop control policies in an end-to-end fashion; and (ii) they require fewer computation resources, especially when the control policy to be developed has a large parameter space. The proposed approach is evaluated in a round-trip task, where the robots are required to travel between two destinations as much as possible. Simulation results show that the proposed approach can learn control policies directly from high-dimensional raw camera pixel inputs for robotic swarms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.