Bohai Gulf is the main area for apple tree cultivation in China. Consecutive replanting significantly affects the yield and quality of apple trees in this area. Microecological imbalance in apple trees’ rhizospheres caused by variation in the soil microbial community is considered the primary cause of apple replant disease (ARD). This study analysed the microbial communities of the rhizospheres of perennial apple trees (PAT) and apple tree saplings under replanting (ATS) around Bohai Gulf using high-throughput sequencing. The results revealed increased populations of typical pathogenic fungi Verticillium and bacteria Xanthomonadaceae, and decreased populations of beneficial bacterial populations Pseudomonas and Bacillus with replanting, suggesting that competition between pathogens and beneficial microbes varies according to the ratio of pathogens to beneficial microbes in rhizosphere soil under the replanting system. Meanwhile, replanting was accompanied by an increase in the antagonistic bacteria Arthrobacter and fungus Chaetomium, suggesting that increased numbers of pathogens can lead to more instances of antagonism. Redundancy analysis (RDA) revealed site position and the main soil properties (pH, organic matter, available N, available K, available P, and moisture) affected the microbial community composition. It found clear differences in soil microbial communities and demonstrated a better understanding of the causes for ARD.
The phytohormone abscisic acid (ABA) plays critical roles in abiotic stress responses and plant development. In germinating seeds, the phytochrome-associated protein phosphatase, FyPP3, negatively regulates ABA signaling by dephosphorylating the transcription factor ABI5. However, whether and how FyPP3 is regulated at the posttranscriptional level remains unclear. Here, we report that an asparagine-rich protein, NRP, interacts with FyPP3 and tethers FyPP3 to SYP41/61-positive endosomes for subsequent degradation in the vacuole. Upon ABA treatment, the expression of NRP was induced and NRP-mediated FyPP3 turnover was accelerated. Consistently, ABA-induced FyPP3 turnover was abolished in an nrp null mutant. On the other hand, FyPP3 can dephosphorylate NRP in vitro, and overexpression of FyPP3 reduced the half-life of NRP in vivo. Genetic analyses showed that NRP has a positive role in ABA-mediated seed germination and gene expression, and that NRP is epistatic to FyPP3. Taken together, our results identify a new regulatory circuit in the ABA signaling network, which links the intracellular trafficking with ABA signaling.
Formation of intracellular mutant Huntingtin (mHtt) aggregates is a hallmark of Huntington's disease (HD). The mechanisms underlying mHtt aggregation, however, are still not fully understood. A few recent studies indicated mHtt undergoes phase transition, bringing new clues to understand how mHtt aggregates assemble. Here in this mini review, we will summarize these findings with a focus on the factors that affect mHtt phase transition. We will also discuss the possible pathological roles of mHtt phase separation in HD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.