BackgroundOur study aimed to identify key differentially expressed genes (DEGs) and miRNAs (DEmiRNAs) which can serve as potential biomarkers for diagnosis and therapy of Alzheimer’s disease (AD).Material/MethodsWe performed miRNA and mRNA integrated analysis (MMIA) to identify DEGs and DEmiRNAs of AD. The AD-specific DEmiRNAs-targets interaction network was contrasted. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis were performed. Q-RT-PCR was used to verify the expression of selected DEGs and DEmiRNAs.ResultsWe conducted MMIA of AD based on 1 miRNA dataset and 3 mRNA datasets derived from the Gene Expression Omnibus (GEO) database; 1759 DEGs and 12 DEmiRNAs were obtained. DEGs of AD were significantly enriched in Huntington’s disease and AD. LRP1, CDK5R1, PLCβ2, NDUFA4, and DLG4 were 5 DEGs regulated by 4 DEmiRNAs, including miR-26b-5p, miR-26a-5p, miR-107, and miR-103a-3p. These 4 miRNAs were the top 4 miRNAs covering most DEGs. According to the qRT-PCR results, the expression of PLCβ2, NDUFA4, DLG4, miR-107, and miR-103a-3p was consistent with our integrated analysis.ConclusionsWe concluded that LRP1, CDK5R1, PLCβ2, NDUFA4, and DLG4 may play a role in AD regulated by miR-26b-5p, miR-26a-5p, miR-107, and miR-103a-3p. Our findings will contribute to identification of biomarkers and new strategies for drug design for AD treatment.
<b><i>Introduction:</i></b> Ischemic stroke is the third leading cause of death. There is no known treatment or cure for the disease. Moreover, the pathological mechanism of ischemic stroke remains unclear. <b><i>Objective:</i></b> We aimed to identify potential microRNAs (miRNAs) and mRNAs, contributing to understanding the pathology of ischemic stroke. <b><i>Methods:</i></b> First, the data of miRNA and mRNA were downloaded for differential expression analysis. Then, the regulatory network between miRNA and mRNAs was constructed. Third, top 100 differentially expressed mRNAs were used to construct a protein-protein interaction network followed by the function annotation of mRNAs. In addition, in vitro experiment was used to validate the expression of mRNAs. Last, receiver operating characteristic diagnostic analysis of differentially methylated genes was performed. <b><i>Results:</i></b> Totally, up to 26 differentially expressed miRNAs and 1,345 differentially expressed mRNAs were identified. Several regulatory interaction pairs between miRNA and mRNAs were identified, such as hsa-miR-206-HMGCR/PICALM, hsa-miR-4491-TMEM97, hsa-miR-3622b-5p/hsa-miR-548k-KLF12, and hsa-miR-302a-3p/hsa-miR-3145-3p-CTSS. MAPK signaling pathway (involved DUSP1) and the Notch signaling pathway (involved NUMB and CREBBP) were identified. The expression validation of KLF12, ARG1, ITGAM, SIRT4, SERPINH1, and DUSP1 was consistent with the bioinformatics analysis. Interestingly, hsa-miR-206, hsa-miR-4491, hsa-miR-3622b-5p, hsa-miR-548k, hsa-miR-302a-3p, hsa-miR-3145-3p, KLF12, and ID3 had the potential diagnostic value of ischemic stroke. <b><i>Conclusions:</i></b> The identified differentially expressed miRNAs and mRNAs may be associated with the development of ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.