This study focused on the application of deep learning algorithms in the segmentation of CT images, so as to diagnose chronic kidney diseases accurately and quantitatively. First, the residual dual-attention module (RDA module) was used for automatic segmentation of renal cysts in CT images. 79 patients with renal cysts were selected as research subjects, of whom 27 cases were defined as the test group and 52 cases were defined as the training group. The segmentation results of the test group were evaluated factoring into the Dice similarity coefficient (DSC), precision, and recall. The experimental results showed that the loss function value of the RDA-UNET model rapidly decayed and converged, and the segmentation results of the model in the study were roughly the same as those of manual labeling, indicating that the model had high accuracy in image segmentation, and the contour of the kidney can be segmented accurately. Next, the RDA-UNET model achieved 96.25% DSC, 96.34% precision, and 96.88% recall for the left kidney and 94.22% DSC, 95.34% precision, and 94.61% recall for the right kidney, which were better than other algorithms. The results showed that the algorithm model in this study was superior to other algorithms in each evaluation index. It explained the advantages of this model compared with other algorithm models. In conclusion, the RDA-UNET model can effectively improve the accuracy of CT image segmentation, and it is worth of promotion in the quantitative assessment of chronic kidney diseases through CT imaging.
The study aimed to explore the accuracy and stability of Deep metric learning (DML) algorithm in Magnetic Resonance Imaging (MRI) examination of Alzheimer's Disease (AD) patients. In this study, MRI data of patients obtained were from Alzheimer's Disease Neuroimaging Initiative (ADNI) database (A total of 180 AD cases, 88 women, 92 men; 188 samples in healthy conditions (HC), including 90 females and 98 males. 210 samples of mild cognitive impairment (MCI), 104 females and 106 males). On the basis of deep learning, an early AD diagnosis system was constructed using CNN (Convolutional Neural Network) and DML algorithms. Then, the system was used to classify AD, HC, and MCI, and the two algorithms were compared for the accuracy and stability of in classification of MRI images. It was found that in the classification of AD and HC, the classification accuracy and sensitivity of the deep measurement learning model are both 0.83, superior to the CNN model; in terms of specificity, the classification specificity of the DML model was 0.82, slightly lower than that of the CNN model; and that in the classification of MCI and HC, the classification accuracy and sensitivity of the DML model was 0.65, superior to the CNN model; and in terms of specificity, the classification specificity of the DML model was 0.66, slightly lower than that of the CNN model. It suggested that the DML model demonstrated better classification effects on early AD patients. The loss curve analysis results showed that, for classification of AD and HC or MCI and HC, the DML algorithm can improve the convergence speed of the AD early prediction model. Therefore, the DML algorithm can significantly improve the clarity and quality of MRI images, elevate the classification accuracy and stability of early AD patients, and accelerate the convergence of the model, providing a new way for early prediction of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.