The timing of the establishment of the Yangtze River, whether prior to the early Miocene (~24 Ma) or more recently (~2 Ma), has been a point of much debate. Here we applied detrital zircon U‐Pb dating to Miocene sedimentary rocks from Taiwan and to estuary sands from modern rivers in SE China to trace sediment provenance and to further constrain the evolution of the Yangtze River. Detrital zircon U‐Pb ages from Miocene sandstones of the Western Foothills show similar age spectra to Miocene and modern sediments in the Yangtze River drainage and some similarity to the Minjiang River sediments. However, they differ significantly from ages in some sandstones from the Hengchun Peninsula accretionary prism and from the estuary sands of the Jiulongjiang River. This information, together with petrographic and sedimentary facies analysis, argues that the Jiulongjiang and Minjiang Rivers were major sources to some Hengchun Peninsula turbidites (~12 Ma), while synchronous sedimentation in the Western Foothills was supplied from the Yangtze, Minjiang (or similar river), and possibly even the Yellow River. These sediments were transported southward/eastward via rivers or channels to the marginal sedimentary basins now inverted in the Western Foothills in Taiwan. The Yangtze River must have been established prior to the middle Miocene.
The Cenozoic sediments in marginal basins of East Asia ultimately reflected coupling between the tectonics, landscape evolution, and drainage reorganization. Recently, the provenance of Miocene sediments in the East China Sea Basin (ECSB) and Taiwan has been in hot debate, and several models were proposed to interpret the provenance changes. Most of them are related to river reorganization in East Asia and highly relied on detrital zircon U-Pb dating. In this study, a large number of detrital zircon U-Pb ages of Miocene sediments from the ECSB, Taiwan region, and the potential source areas have been compiled for quantitative provenance analysis. The results suggested that all the early–middle Miocene sediments in Taiwan and the ECSB were closely linked to North China and the Korean Peninsula. Over 80% sediments in Taiwan were delivered from the ECSB whose sediments were predominantly contributed by North China and the Korean Peninsula (70%). However, for the late Miocene to Quaternary sediments in the ECSB, the contribution of the Yangtze River system was 72%, which indicates distinct reorganization of river networks and initial formation of the Yangtze River in the late Miocene. The quantitative provenance analysis together with southward environmental changes from dominantly fluvial sediments in the northern and middle ECSB to shallow marine sediments in Taiwan region suggested that the early–middle Miocene sediments of Taiwan were mainly sourced from the North China and the Korean Peninsula by passing the ECSB. Thus, these sediments in Taiwan region would experience the river–delta–shallow marine route from the ECSB to Taiwan region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.