Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. In this study, sorafenib-loaded lipid-based nanosuspensions (sorafenib-LNS) were first developed as an intravenous injectable formulation to increase the efficacy of sorafenib against HCC. LNS were used as nanocarriers for sorafenib owing to their desired features in increasing the solubility and dissolution velocity, improving the bioavailability of sorafenib. Sorafenib-LNS were prepared by nanoprecipitation and consisted of spherical particles with a uniform size distribution (164.5 nm, polydispersity index =0.202) and negative zeta potential (−11.0 mV). The drug loading (DL) was 10.55%±0.16%. Sorafenib-LNS showed higher in vitro cytotoxicity than sorafenib against HepG2 cells ( P <0.05) and Bel-7402 cells ( P <0.05). The in vivo biodistribution, biocompatibility, and antitumor efficacy of sorafenib-LNS were evaluated in H22-bearing liver cancer xenograft murine model. The results showed that sorafenib-LNS (9 mg/kg) exhibited significantly higher antitumor efficacy by reducing the tumor volume compared with the sorafenib oral group (18 mg/kg, P <0.05) and sorafenib injection group (9 mg/kg, P <0.05). Furthermore, the results of the in vivo biodistribution experiments demonstrated that sorafenib-LNS injected into H22 tumor-bearing mice exhibited increased accumulation in the tumor tissue, which was confirmed by in vivo imaging. In the current experimental conditions, sorafenib-LNS did not show significant toxicity both in vitro and in vivo. These results suggest that sorafenib-LNS are a promising nanomedicine for treating HCC.
Although studies have seen dramatic advances in the understanding of the pathogenesis of stroke such as oxidative stress, inflammation, excitotoxicity, calcium overload and apoptosis, the delivery of stroke therapies is still a great challenge. In this study, we designed and synthesized a series of novel twin compounds containing tetramethylpyrazine and carnitine substructures and explored their therapeutic potential and mechanism in stroke-related neuronal injury. We first screened the neuroprotective effects of candidate compounds and found that among the tested compounds, LR134 and LR143 exhibited significant neuroprotection as evidenced by reducing cerebral infarct and edema, improving neurological function as well as blood-brain barrier integrity in rats after cerebral ischemia/reperfusion injury. We further demonstrated that the neuroprotective effects of compounds LR134 and LR143 were associated with the reduced inflammatory responses and NADPH oxidase- (NOX2-) mediated oxidative stress and the protection of mitochondria accompanied by the improvement of energy supply. In summary, this study provides direct evidence showing that the novel twin compounds containing tetramethylpyrazine and carnitine substructures have neuroprotective effects with multiple therapeutic targets, suggesting that modulation of these chemical structures may be an innovative therapeutic strategy for treating patients with stroke.
The introduction of C-2 acyl groups and a benzyl ester onto L-carnitine generated a series of carnitine benzyl esters as prodrug with improved liposolubility, stability and bioavailability.
Premature ovarian insufficiency (POI) is a clinically heterogeneous disease that may seriously affect the physical and mental health of women of reproductive age. POI primarily manifests as ovarian function decline and endocrine disorders in women prior to age 40 and is an established cause of female infertility. It is crucial to elucidate the causative factors of POI, not only to expand the understanding of ovarian physiology, but also to provide genetic counselling and fertility guidance to affected patients. Factors leading to POI are multifaceted with genetic factors accounting for 7% to 30%. In recent years, an increasing number of DNA damage-repair-related genes have been linked with the occurrence of POI. Among them, DNA double-strand breaks (DSBs), one of the most damaging to DNA, and its main repair methods including homologous recombination (HR) and non-homologous end joining (NHEJ) are of particular interest. Numerous genes are known to be involved in the regulation of programmed DSB formation and damage repair. The abnormal expression of several genes have been shown to trigger defects in the overall repair pathway and induce POI and other diseases. This review summarises the DSB-related genes that may contribute to the development of POI and their potential regulatory mechanisms, which will help to further establish role of DSB in the pathogenesis of POI and provide theoretical guidance for the study of the pathogenesis and clinical treatment of this disease.
Key indicators: single-crystal X-ray study; T = 293 K; mean (C-C) = 0.006 Å; R factor = 0.049; wR factor = 0.206; data-to-parameter ratio = 20.2.The title compound, C 23 H 28 NO 4 + ÁCl À ÁHCl, is a quaternary ammonium salt with a scaffold similar to that of acetyl-lcarnitine hydrochloride. The two Cl atoms in the structure are tightly bonded by a strong Cl-HÁ Á ÁCl hydrogen bond with a ClÁ Á ÁCl separation of 3.068 (2) Å . The cations are held together partly by a range of C-HÁ Á ÁO and C-HÁ Á Á interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.