Twenty-nine single-nucleotide polymorphisms (SNPs) from previously published genome-wide association studies (GWAS) and multiple ancestry informative markers were genotyped in the Carolina Breast Cancer Study (CBCS) (742 African-American (AA) cases, 1230 White cases; 658 AA controls, 1118 White controls). In the entire study population, 9/10 SNPs in fibroblast growth factor receptor 2 (FGFR2) were significantly associated with breast cancer after adjusting for age, race and European ancestry [odds ratios (OR) range 1.17-1.81]. Associations were observed for SNPs in FGFR2, LSP1, H19, TLR1/TLR6 and RELN for AA; FGFR2, TNRC9, H19 and MAP3K1 for Whites; FGFR2, TNRC9, Msc5A1 and chromosome 8q for women > or =50 years old and FGFR2 and TNRC9 for women <50 years old. FGFR2 haplotypes based upon rs11200014, rs2981579, rs1219648 and rs2420946 were associated with increased risk of breast cancer, including the GTGT haplotype in AAs [OR = 1.27, 95% confidence interval (CI) 1.04-1.56] and younger women of either race [OR = 1.35, 95% CI 1.02-1.78) and the ATGT haplotype in Whites (OR = 1.30, 95% CI 1.15-1.46). Recent GWAS hits for breast cancer in Europeans and Whites (i.e. women of European descent) thus showed evidence of replication among AAs and Whites in the CBCS. Several new haplotypes were associated with breast cancer in AA and younger women, particularly the FGFR2 GTGT haplotype. These results highlight the need to conduct GWAS among younger women and in a variety of racial-ethnic populations.
BackgroundGliomas are the most common primary malignant brain tumors in adults with great heterogeneity in histopathology and clinical course. The intent was to evaluate the relevance of known glioblastoma (GBM) expression and methylation based subtypes to grade II and III gliomas (ie. lower grade gliomas).MethodsGene expression array, single nucleotide polymorphism (SNP) array and clinical data were obtained for 228 GBMs and 176 grade II/II gliomas (GII/III) from the publically available Rembrandt dataset. Two additional datasets with IDH1 mutation status were utilized as validation datasets (one publicly available dataset and one newly generated dataset from MD Anderson). Unsupervised clustering was performed and compared to gene expression subtypes assigned using the Verhaak et al 840-gene classifier. The glioma-CpG Island Methylator Phenotype (G-CIMP) was assigned using prediction models by Fine et al.ResultsUnsupervised clustering by gene expression aligned with the Verhaak 840-gene subtype group assignments. GII/IIIs were preferentially assigned to the proneural subtype with IDH1 mutation and G-CIMP. GBMs were evenly distributed among the four subtypes. Proneural, IDH1 mutant, G-CIMP GII/III s had significantly better survival than other molecular subtypes. Only 6% of GBMs were proneural and had either IDH1 mutation or G-CIMP but these tumors had significantly better survival than other GBMs. Copy number changes in chromosomes 1p and 19q were associated with GII/IIIs, while these changes in CDKN2A, PTEN and EGFR were more commonly associated with GBMs.ConclusionsGBM gene-expression and methylation based subtypes are relevant for GII/III s and associate with overall survival differences. A better understanding of the association between these subtypes and GII/IIIs could further knowledge regarding prognosis and mechanisms of glioma progression.
Changes in atmospheric CO 2 concentration have played a central role in algal and plant adaptation and evolution. The commercially important red algal genus, Pyropia (Bangiales) appears to have responded to inorganic carbon (C i ) availability by evolving alternating heteromorphic generations that occupy distinct habitats. The leafy gametophyte inhabits the intertidal zone that undergoes frequent emersion, whereas the sporophyte conchocelis bores into mollusk shells. Here, we analyze a high-quality genome assembly of Pyropia yezoensis to elucidate the interplay between C i availability and life cycle evolution. We find horizontal gene transfers from bacteria and expansion of gene families (e.g. carbonic anhydrase, anti-oxidative related genes), many of which show gametophyte-specific expression or significant up-regulation in gametophyte in response to dehydration. In conchocelis, the release of HCO 3 - from shell promoted by carbonic anhydrase provides a source of C i . This hypothesis is supported by the incorporation of 13 C isotope by conchocelis when co-cultured with 13 C-labeled CaCO 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.