BackgroundWorldwide approximately 7,000 rare diseases have been identified. Accordingly, 4 million individuals live with a rare disease in Germany. The mean time to diagnosis is about 6 years and patients receive several incorrect diagnoses during this time. A multiplicity of factors renders diagnosing a rare disease extremely difficult. Detection of shared phenomena among individuals with different rare diseases could assist the diagnostic process. In order to explore the demand for diagnostic support and to obtain the commonalities among patients, a nationwide Delphi survey of centers for rare diseases and patient groups was conducted.MethodsA two-step Delphi survey was conducted using web-based technologies in all centers for rare diseases in Germany. Moreover, the leading patient support group, the German foundation for rare diseases (ACHSE), was contacted to involve patients as experts in their disease. In the survey the experts were invited to name rare diseases with special need for diagnostic improvement. Secondly, communal experiences of affected individuals were collected.Results166 of 474 contacted experts (35%) participated in the first round of the Delphi process and 95 of 166 (57%) participated in the second round. Metabolic (n = 74) and autoimmune diseases (n = 39) were ranked the highest for need for diagnostic support. For three diseases (i.e. scleroderma, Pompe’s disease, and pulmonary arterial hypertension), a crucial need for diagnostic support was explicitly stated. A typical experience of individuals with a rare disease was stigmatization of having psychological or psychosomatic problems. In addition, most experts endured an ‘odyssey’ of seeing many different medical specialists before a correct diagnosis (n = 38) was confirmed.ConclusionThere is need for improving the diagnostic process in individuals with rare diseases. Shared experiences in individuals with a rare disease were observed, which could possibly be utilized for diagnostic support in the future.
BackgroundDiagnosis of neuromuscular diseases in primary care is often challenging. Rare diseases such as Pompe disease are easily overlooked by the general practitioner. We therefore aimed to develop a diagnostic support tool using patient-oriented questions and combined data mining algorithms recognizing answer patterns in individuals with selected neuromuscular diseases. A multicenter prospective study for the proof of concept was conducted thereafter.MethodsFirst, 16 interviews with patients were conducted focusing on their pre-diagnostic observations and experiences. From these interviews, we developed a questionnaire with 46 items. Then, patients with diagnosed neuromuscular diseases as well as patients without such a disease answered the questionnaire to establish a database for data mining. For proof of concept, initially only six diagnoses were chosen (myotonic dystrophy and myotonia (MdMy), Pompe disease (MP), amyotrophic lateral sclerosis (ALS), polyneuropathy (PNP), spinal muscular atrophy (SMA), other neuromuscular diseases, and no neuromuscular disease (NND). A prospective study was performed to validate the automated malleable system, which included six different classification methods combined in a fusion algorithm proposing a final diagnosis. Finally, new diagnoses were incorporated into the system.ResultsIn total, questionnaires from 210 individuals were used to train the system. 89.5 % correct diagnoses were achieved during cross-validation. The sensitivity of the system was 93–97 % for individuals with MP, with MdMy and without neuromuscular diseases, but only 69 % in SMA and 81 % in ALS patients. In the prospective trial, 57/64 (89 %) diagnoses were predicted correctly by the computerized system. All questions, or rather all answers, increased the diagnostic accuracy of the system, with the best results reached by the fusion of different classifier methods. Receiver operating curve (ROC) and p-value analyses confirmed the results.ConclusionA questionnaire-based diagnostic support tool using data mining methods exhibited good results in predicting selected neuromuscular diseases. Due to the variety of neuromuscular diseases, additional studies are required to measure beneficial effects in the clinical setting.Electronic supplementary materialThe online version of this article (doi:10.1186/s12911-016-0268-5) contains supplementary material, which is available to authorized users.
BackgroundRare diseases (RD) result in a wide variety of clinical presentations, and this creates a significant diagnostic challenge for health care professionals. We hypothesized that there exist a set of consistent and shared phenomena among all individuals affected by (different) RD during the time before diagnosis is established.ObjectiveWe aimed to identify commonalities between different RD and developed a machine learning diagnostic support tool for RD.Methods20 interviews with affected individuals with different RD, focusing on the time period before their diagnosis, were performed and qualitatively analyzed. Out of these pre-diagnostic experiences, we distilled key phenomena and created a questionnaire which was then distributed among individuals with the established diagnosis of i.) RD, ii.) other common non-rare diseases (NRO) iii.) common chronic diseases (CD), iv.), or psychosomatic/somatoform disorders (PSY). Finally, four combined single machine learning methods and a fusion algorithm were used to distinguish the different answer patterns of the questionnaires.ResultsThe questionnaire contained 53 questions. A total sum of 1763 questionnaires (758 RD, 149 CD, 48 PSY, 200 NRO, 34 healthy individuals and 574 not evaluable questionnaires) were collected. Based on 3 independent data sets the 10-fold stratified cross-validation method for the answer-pattern recognition resulted in sensitivity values of 88.9% to detect the answer pattern of a RD, 86.6% for NRO, 87.7% for CD and 84.2% for PSY.ConclusionDespite the great diversity in presentation and pathogenesis of each RD, patients with RD share surprisingly similar pre-diagnosis experiences. Our questionnaire and data-mining based approach successfully detected unique patterns in groups of individuals affected by a broad range of different rare diseases. Therefore, these results indicate distinct patterns that may be used for diagnostic support in RD.
IntroductionPrimary immunodeficiency disorders (PIDs) are a heterogeneous group of more than 200 rare diseases. Timely diagnosis is of uttermost importance. Therefore, we aimed to develop a diagnostic questionnaire with computerized pattern-recognition in order to support physicians to identify suspicious patient histories.Materials and methodsStandardized interviews were conducted with guardians of children with PID. The questionnaire based on parental observations was developed using Colaizzis’ framework for content analysis. Answers from 64 PID patients and 62 controls were analyzed by data mining methods in order to make a diagnostic prediction. Performance was evaluated by k-fold stratified cross-validation.ResultsThe diagnostic support tool achieved a diagnostic sensitivity of up to 98%. The analysis of 12 interviews revealed 26 main phenomena observed by parents in the pre-diagnostic period. The questions were systematically phrased and selected resulting in a 36-item questionnaire. This was answered by 126 patients with or without PID to evaluate prediction. Item analysis revealed significant questions.DiscussionOur approach proved suitable for recognizing patterns and thus differentiates between observations of PID patients and control groups. These findings provide the basis for developing a tool supporting physicians to consider a PID with a questionnaire. These data support the notion that patient’s experience is a cornerstone in the diagnostic process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.