Few-layer palladium diselenide (PdSe 2 ) field effect transistors are studied under external stimuli such as electrical and optical fields, electron irradiation, and gas pressure. The ambipolar conduction and hysteresis are observed in the transfer curves of the as-exfoliated and unprotected PdSe 2 material. The ambipolar conduction and its hysteretic behavior in the air and pure nitrogen environments are tuned. The prevailing p-type transport observed at atmospheric pressure is reversibly turned into a dominant n-type conduction by reducing the pressure, which can simultaneously suppress the hysteresis. The pressure control can be exploited to symmetrize and stabilize the transfer characteristics of the device as required in highperformance logic circuits. The transistors are affected by trap states with characteristic times in the order of minutes. The channel conductance, dramatically reduced by the electron irradiation during scanning electron microscope imaging, is restored after an annealing of several minutes at room temperature. The work paves the way toward the exploitation of PdSe 2 in electronic devices by providing an experiment-based and deep understanding of charge transport in PdSe 2 transistors subjected to electrical stress and other external agents.
Metallic transition metal dichalcogenides (TMDs) have exhibited various exotic physical properties and hold the promise of novel optoelectronic and topological devices applications. However, the synthesis of metallic TMDs is based on gas-phase methods and requires high-temperature condition. As an alternative to the gas-phase synthetic approach, lower temperature eutectic liquid-phase synthesis presents a very promising approach with the potential for larger-scale and controllable growth of high-quality thin metallic TMD single crystals. Here, the first realization of low-temperature eutectic liquid-phase synthesis of type-II Dirac semimetal PtTe 2 single crystals with thickness ranging from 2 to 200 nm is presented. The electrical measurement of synthesized PtTe 2 reveals a record-high conductivity of as high as 3.3 × 10 6 S m −1 at room temperature. Besides, the weak antilocalization behavior is identified experimentally in the type-II Dirac semimetal PtTe 2 for the first time. Furthermore, a simple and general strategy is developed to obtain atomically thin PtTe 2 crystal by thinning as-synthesized bulk samples, which can still retain highly crystalline and exhibits excellent electrical conductivity. The results of controllable and scalable low-temperature eutectic liquid-phase synthesis and layer-by-layer thinning of high-quality thin PtTe 2 single crystals offer a simple and general approach for obtaining different thickness metallic TMDs with high meltingpoint transition metal.
Since the discovery of extremely large non-saturating magnetoresistance (MR) in WTe2, much effort has been devoted to understanding the underlying mechanism, which is still under debate. Here, we explicitly identify the dominant physical origin of the large non-saturating MR through in-situ tuning of the magnetotransport properties in thin WTe2 film. With an electrostatic doping approach, we observed a non-monotonic gate dependence of the MR. The MR reaches a maximum (10600%) in thin WTe2 film at certain gate voltage where electron and hole concentrations are balanced, indicating that the charge compensation is the dominant mechanism of the observed large MR. Besides, we show that the temperature dependent magnetoresistance exhibits similar tendency with the carrier mobility when the charge compensation is retained, revealing that distinct scattering mechanisms may be at play for the temperature dependence of magneto-transport properties. Our work would be helpful for understanding mechanism of the large MR in other nonmagnetic materials and offers an avenue for achieving large MR in the non-magnetic materials with electron-hole pockets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.