Background Baculoviruses act as effective biological control agents against the invasive pest Hyphantria cunea Drury. In this study, two Chinese Hyphantria cunea nucleopolyhedrovirus (HycuNPV) isolates, HycuNPV-BJ and HycuNPV-HB, were deep sequenced and compared with the Japanese isolate, HycuNPV-N9, to determine whole-genome level diversity and evolutionary history. Results The divergence of the phylogenetic tree and the K2P distances based on 38 core-gene concatenated alignment revealed that two Chinese HycuNPV isolates were a novel species of Alphabaculovirus that infected Hyphantria cunea in China. The gene contents indicated significant differences in the HycuNPV genomes between the Chinese and Japanese isolates. The differences included gene deletions, acquisitions and structural transversions, but the main difference was the high number of single nucleotide polymorphisms (SNPs). In total, 10,393 SNPs, corresponding to approximately 8% of the entire HycuNPV-N9 genome sequence, were detected in the aligned reads. By analyzing non-synonymous variants, we found that hotspot mutation-containing genes had mainly unknown functions and most were early expressing genes. We found that the hycu78 gene which had early and late promoter was under positive selection. Biological activity assays revealed that the infectivity of HycuNPV-HB was greater than that of HycuNPV-BJ, and the killing speed of HycuNPV-HB was faster than that of HycuNPV-BJ. A comparison of molecular genetic characteristics indicated that the virulence differences between the two isolates were affected by SNP and structural variants, especially the homologous repeat regions. Conclusions The genomes of the two Chinese HycuNPV isolates were characterized, they belonged to a novel species of Alphabaculovirus that infected Hyphantria cunea in China. We inferred that the loss or gain of genetic material in the HycuNPV-HB and HycuNPV-BJ genomes resulted in new important adaptive capabilities to the H. cunea host. These results extend the current understanding of the genetic diversity of HycuNPV and will be useful for improving the applicability of this virus as a biological control agent.
The median lethal dose (LD50) is commonly used to indicate acute toxicity of an insecticide to an insect species. Approximate confidence intervals for LD50s are often calculated using the Fieller and delta methods. It is often necessary to compare the relative potencies of several insecticides with a population or of one insecticide with different populations. Comparing the LD50s using probit/logit–log(dose) regressions with parallel slopes can be implemented in many software packages, but for the cases with arbitrary slopes are not generally available. We used the glm function in R to calculate and compare lethal doses without assuming equal slopes. Bioassay datasets from the literature fitted using the logit model gave the 95% confidence limits (95% CLs) for the lethal doses using Fieller’s theorem and incorporating a heterogeneity factor identical to the 95% CLs determined using the PoloPlus software. The delta method gave 95% CLs identical to the 95% CLs determined using the R drc package. The same datasets fitted using the probit model gave 95% CLs similar to the 95% CLs determined using PoloPlus and the drc package. The natural response rates for the control group were included using Abbott’s equation. When the potency ratio method and the z-test were used to identify differences between two lethal doses, and when the χ2 and log likelihood ratio tests were used to determine whether the regression lines were parallel, the conclusions were the same as those gave by PoloPlus and the drc package.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.