Plant polyphenols possess beneficial functions against various diseases. This study aimed to identify phenolic ingredients in Camellia fascicularis (C. fascicularis) and investigate its possible underlying anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced human monocytes (THP-1) macrophages. Methods: C. fascicularis polyphenols (CFP) were characterized by ultra-performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight mass/mass spectrometry (Q-TOF-MS/MS). The THP-1 cells were differentiated into macrophages under the stimulation of phorbol 12-myristate 13-acetate (PMA) and then treated with LPS to build a cellular inflammation model. The cell viability was detected by CCK-8 assay. The levels of reactive oxygen species (ROS) were assessed by flow cytometry. The secretion and expression of inflammatory cytokines were tested by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). In addition, the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were analyzed by Western blotting. Results: Twelve phenolic constituents including (-)-epicatechin, casuariin, agastachoside, etc. in CFP were identified. The CCK-8 assay showed that CFP exhibited no significant cytotoxicity between 100 and 300 μg/mL. After treated with CFP, the release of ROS was significantly suppressed. CFP inhibited inflammation in macrophages by attenuating the polarization of LPS-induced THP-1 macrophages, down-regulating the expression of the pro-inflammatory cytokines IL-6, IL-1β and TNF-α, and up-regulating the expression of the anti-inflammatory cytokine IL-10. Western blotting experiments manifested that CFP could markedly inhibit the phosphorylation of p65, ERK and JNK, thereby suppressing the activation of NF-κB and MAPK signaling pathways. Conclusion: These findings indicated that CFP exerted anti-inflammatory activity by inhibiting the activation NF-κB and MAPK pathways which may induce the secretion of pro-inflammatory cytokines. This study offers a reference for C. fascicularis as the source of developing natural, safe anti-inflammatory agents in the future.
Camellia fascicularis is a unique plant rich in bioactive components. However, the isolation of the active substances in C. fascicularis leaves via sequential extraction with solvents of different polarity and the determination of their antioxidant and antitumor activities have not been reported. In this study, the total methanol extract of C. fascicularis leaves was sequentially extracted with different polar solvents, and the corresponding petroleum ether extract (PEE), ethyl acetate extract (EAE), and water extract (WE) were analyzed for their contents in active substances such as flavonoids, polyphenols, polysaccharides, and saponins. The antioxidant ability of the polar extracts was investigated by determining their reducing power and the radical scavenging rate on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl radicals, and CCK-8 and Annexin-FITC/propidium iodide staining assays were conducted to investigate their inhibitory effects on HCCLM6 and HGC27 tumor cells. The results showed that PEE had a high saponin content of 197.35 ± 16.21 mg OAE/g, while EAE and WE exhibited a relatively higher polysaccharide content of 254.37 ± 1.99 and 373.27 ± 8.67 mg GE/g, respectively. The EAE demonstrated the greatest reducing power and the strongest clearing abilities on ABTS and DPPH radicals with respective EC50 values of 343.45 ± 20.12 and 14.07 ± 0.06 μg/ml. Moreover, the antitumor ability of the different polar extracts was dose-dependent, with WE showing the most potent inhibitory ability against HCCLM6 and HGC27 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.