CpG methylation of DNA is common in mammalian cells. In sperm, the DNA has the highest level of CpG methylation and is condensed into toroidal structures. How CpG methylation affects DNA structures and interactions is important to understand its biological roles but is largely unknown. Using an RNA−DNA−RNA structure, we observed the equilibrium hopping dynamics between the condensed and extended states of DNA in the presence of polyamines or polylysine peptide as a reduced model of histone tails. Combing with the measured DNA elasticities, we report that CpG methylation of each cytosine nucleotide substantially increases DNA−DNA attraction by up to 0.2 k B T. For the DNA with 57% GC content, the relative increase caused by CpG methylation is up to 32% for the spermine-induced DNA−DNA attraction and up to 9% for the polylysine-induced DNA−DNA attraction. These findings help us to evaluate the energetic contributions of CpG methylation in sperm development and chromatin regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.