In this work, an acoustic topology optimization method for structural surface design covered by porous materials is proposed. The analysis of acoustic problems is performed using the isogeometric boundary element method. Taking the element density of porous materials as the design variable, the volume of porous materials as the constraint, and the minimum sound pressure or maximum scattered sound power as the design goal, the topology optimization is carried out by solid isotropic material with penalization (SIMP) method. To get a limpid 0-1 distribution, a smoothing Heaviside-like function is proposed. To obtain the gradient value of the objective function, a sensitivity analysis method based on the adjoint variable method (AVM) is proposed. To find the optimal solution, the optimization problems are solved by the method of moving asymptotes (MMA) based on gradient information. Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems. Furthermore, the optimal distribution of sound-absorbing materials is highly frequency-dependent and usually needs to be performed within a frequency band.
This paper presents a stochastic analysis method for linear elastic fracture mechanics using the Monte Carlo simulations (MCs) and the scaled boundary finite element method (SBFEM) based on proper orthogonal decomposition (POD) and radial basis functions (RBF). The semianalytical solutions obtained by the SBFEM enable us to capture the stress intensity factors (SIFs) easily and accurately. The adoption of POD and RBF significantly reduces the model order and increases computation efficiency, while maintaining the versatility and accuracy of MCs. Numerical examples of cracks in homogeneous and bimaterial plates are provided to demonstrate the effectiveness and reliability of the proposed method, where the crack inclination angles are set as uncertain variables. It is also found that the larger the scale of the problem, the more advantageous the proposed method is.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.