Aiming at a pneumatic artificial muscle (PAM) lower extremity exoskeleton, a control mechanism based on hybrid phase sliding mode control (SMC) is proposed. First of all, the human gait cycle is mainly divided into the swing phase and stance phase, and the lower extremity exoskeleton phase models are established by the Euler–Lagrange method, respectively. Secondly, the lower limb exoskeleton is inevitably affected in the diverse working environment, and the exoskeleton model has nonlinear and strong coupling characteristics, which both increase the control difficulty. In this situations, a robust sliding mode control method is designed based on an Extended State Observer (ESO). Thirdly, the pneumatic muscle takes time to contract and relax, and then the joint input torque cannot jump when the gait phase changes, hence, the smoothing switching of the assistive control scheme is introduced to solve it. The smoothing switching time is detected by a phase detector, and the phase detector is designed by the plantar pressure information. Finally the comparative simulation shows that this control strategy has the advantages of fast time, high control precision and no jump during control torque switching. Pneumatic artificial muscle contraction rate curve shows that the pneumatic muscles’ motion range meets the control requirement of the exoskeleton.
Abstract. The flue gas flow from thermal power plant is an important standard in the environmental monitoring process to judge whether the procedure need improving. Because of the low flow of SO 3 and its profound impact on the environment, it is hard but necessary to monitor the precise content at present overall. Combined with current situations in the thermal power plant, this paper first gives some introduction to the traditional measurements methods for SO 3 , especially the manual controlled condensation method. Then optimize the existing problems in the process of monitory, designing a simple SO 3 -monitoring apparatus which can be arranged near a flue in the sub period, to realize optimization for the original technology with high precision flowmeter and new materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.