BackgroundSystems biology has embraced computational modeling in response to the quantitative nature and increasing scale of contemporary data sets. The onslaught of data is accelerating as molecular profiling technology evolves. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) is a community effort to catalyze discussion about the design, application, and assessment of systems biology models through annual reverse-engineering challenges.Methodology and Principal FindingsWe describe our assessments of the four challenges associated with the third DREAM conference which came to be known as the DREAM3 challenges: signaling cascade identification, signaling response prediction, gene expression prediction, and the DREAM3 in silico network challenge. The challenges, based on anonymized data sets, tested participants in network inference and prediction of measurements. Forty teams submitted 413 predicted networks and measurement test sets. Overall, a handful of best-performer teams were identified, while a majority of teams made predictions that were equivalent to random. Counterintuitively, combining the predictions of multiple teams (including the weaker teams) can in some cases improve predictive power beyond that of any single method.ConclusionsDREAM provides valuable feedback to practitioners of systems biology modeling. Lessons learned from the predictions of the community provide much-needed context for interpreting claims of efficacy of algorithms described in the scientific literature.
bBecause of its remarkable ability to acquire antibiotic resistance and to survive in nosocomial environments, Acinetobacter baumannii has become a significant nosocomial infectious agent worldwide. Tigecycline is one of the few therapeutic options for treating infections caused by A. baumannii isolates. However, tigecycline resistance has increasingly been reported. Our aim was to assess the prevalence and characteristics of efflux-based tigecycline resistance in clinical isolates of A. baumannii collected from a hospital in China. A total of 74 A. baumannii isolates, including 64 tigecycline-nonsusceptible A. baumannii (TNAB) and 10 tigecycline-susceptible A. baumannii (TSAB) isolates, were analyzed. The majority of them were determined to be positive for adeABC, adeRS, adeIJK, and abeM, while the adeE gene was found in only one TSAB isolate. Compared with the levels in TSAB isolates, the mean expression levels of adeB, adeJ, adeG, and abeM in TNAB isolates were observed to increase 29-, 3-, 0.7-, and 1-fold, respectively. The efflux pump inhibitors (EPIs) phenyl-arginine--naphthylamide (PAN) and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) could partially reverse the resistance pattern of tigecycline. Moreover, the tetX1 gene was detected in 12 (18.8%) TNAB isolates. To our knowledge, this is the first report of the tetX1 gene being detected in A. baumannii isolates. ST208 and ST191, which both clustered into clonal complex 92 (CC92), were the predominant sequence types (STs). This study showed that the active efflux pump AdeABC appeared to play important roles in the tigecycline resistance of A. baumannii. The dissemination of TNAB isolates in our hospital is attributable mainly to the spread of CC92.
Enhancer of zeste homolog 2 (EZH2) is a key epigenetic regulator that catalyzes the trimethylation of H3K27 and is modulated by post-translational modifications (PTMs). However, the precise regulation of EZH2 PTMs remains elusive. We, herein, report that EZH2 is acetylated by acetyltransferase P300/CBP-associated factor (PCAF) and is deacetylated by deacetylase SIRT1. We identified that PCAF interacts with and acetylates EZH2 mainly at lysine 348 (K348). Mechanistically, K348 acetylation decreases EZH2 phosphorylation at T345 and T487 and increases EZH2 stability without disrupting the formation of polycomb repressive complex 2 (PRC2). Functionally, EZH2 K348 acetylation enhances its capacity in suppression of the target genes and promotes lung cancer cell migration and invasion. Further, elevated EZH2 K348 acetylation in lung adenocarcinoma patients predicts a poor prognosis. Our findings define a new mechanism underlying EZH2 modulation by linking EZH2 acetylation to its phosphorylation that stabilizes EZH2 and promotes lung adenocarcinoma progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.