Flexible joints are widely used in ‘soft’ touching and holding, and they represent the main component of ultra-short radius drilling tools. The analysis of contact and motion characteristics is an essential issue in the design and development stage of flexible joints. In this study, a collision dynamics model of a ball cage flexible joint (BCFJ), which is suitable for the characteristics of small clearance and large load, is established. The model contains a nonlinear stiffness coefficient and can describe the contact force between the ball key and the raceways. Moreover, the computational procedure for the dynamic analysis of BCFJ with clearance is established, and the dynamic simulation for collision and contact between ball, cage, outer race, and inner race was carried out. By numerical calculation, the variation of contact force on the five contact points of the ball key and ball cage is discussed, and the influence of ball cage clearance on contact force between ball key, ball seat, and ball cage is obtained. The results indicate that the effects of the ball cage clearance on the contact force cannot be ignored, which is the main cause for the vibration of the flexible joint system, and the amplitude of the contact force will gradually increase with the increase of the clearance. The proposed model and procedure can analyze the dynamic behavior of flexible joints with small clearance and large load, providing a basis for further research on wear prediction and safety evaluation of the BCFJ with clearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.