Multiplexed modulation of endogenous genes is crucial for sophisticated gene therapy and cell engineering. CRISPR-Cas12a systems enable versatile multiple genomic loci targeting by processing numerous crRNAs from a single transcript, however, their low efficiency has hindered applications
in vivo
. Through structure-guided protein engineering, we develop a hyper-efficient LbCas12a variant, termed hyperCas12a, with its catalytically dead version hyperdCas12a showing significantly enhanced efficacy for gene activation, particularly at low crRNA conditions. We demonstrate that hyperdCas12a has minimal off-target effects compared to the wildtype system and exhibits enhanced activity for gene editing and repression. Delivery of the hyperdCas12a-activator and a single crRNA array simultaneously activating endogenous
Oct4, Sox2,
and
Klf4
genes in the retina of postnatal mice alters the differentiation of retinal progenitor cells. The hyperCas12a system offers a versatile
in vivo
tool for a broad range of gene modulation and gene therapy applications.
As an important free energy source, the membrane voltage (V
m
) regulates many essential physiological processes in bacteria. However, in comparison with eukaryotic cells, knowledge of bacterial electrophysiology is very limited. Here, we developed a set of novel genetically encoded bacterial V
m
sensors which allow single-cell recording of bacterial V
m
dynamics in live cells with high temporal resolution. Using these new sensors, we reveal the electrically “excitable” and “resting” states of bacterial cells dependent on their metabolic status. In the electrically excitable state, frequent hyperpolarization spikes in bacterial V
m
are observed, which are regulated by Na
+
/K
+
ratio of the medium and facilitate increased antibiotic tolerance. In the electrically resting state, bacterial V
m
displays significant cell-to-cell heterogeneity and is linked to the cell fate after antibiotic treatment. Our findings demonstrate the potential of our newly developed voltage sensors to reveal the underpinning connections between bacterial V
m
and antibiotic tolerance.
A novel tentacle-type polymer stationary phase covalently modified with branched polyethyleneimine (PEI) was developed for peptides and proteins separations by open-tubular CEC (OT-CEC). The preparation procedure included the silanization of capillary inner wall, in situ graft polymerization and PEI functionalization. A wrinkly polymer surface of multitudinous steric amine groups was evenly formed on the capillary inner wall, and anodic EOF could be gained within a wide pH range of 2.5-7.5. The electroosmotic mobility was examined for its dependence on pH as well as PEI concentrations. Good repeatability was gained with RSD for the migration time of EOF marker within 4.8% and satisfactory chemical stability was validated. Due to the existence of amine groups on the surface of tentacle-type polymer stationary phase, the silanol effect that occurs between the positively charged biomolecules and the silanols of the capillary column was greatly suppressed. Compared with a monolayer-coating capillary, seven enkephalin-related peptides were well resolved on the PEI-bonded column with high efficiencies. Favorable separations of peptides and proteins with high column efficiencies were obtained in 144,000-189,000 and 97,000-170,000 plates/m. Branched PEI-bonded tentacle-type polymer stationary phase has been proven to afford satisfactory retention and resolution of peptides and proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.