Collecting comprehensive data sets of the same subject has become a standard in neuroscience research and uncovering multivariate relationships among collected data sets have gained significant attentions in recent years. Canonical correlation analysis (CCA) is one of the powerful multivariate tools to jointly investigate relationships among multiple data sets, which can uncover disease or environmental effects in various modalities simultaneously and characterize changes during development, aging, and disease progressions comprehensively. In the past 10 years, despite an increasing number of studies have utilized CCA in multivariate analysis, simple conventional CCA dominates these applications. Multiple CCA‐variant techniques have been proposed to improve the model performance; however, the complicated multivariate formulations and not well‐known capabilities have delayed their wide applications. Therefore, in this study, a comprehensive review of CCA and its variant techniques is provided. Detailed technical formulation with analytical and numerical solutions, current applications in neuroscience research, and advantages and limitations of each CCA‐related technique are discussed. Finally, a general guideline in how to select the most appropriate CCA‐related technique based on the properties of available data sets and particularly targeted neuroscience questions is provided.
ObjectiveTo investigate the topographic arrangement and strength of whole-brain white matter (WM) structural connectivity in patients with early-stage drug-naive Parkinson disease (PD).MethodsWe employed a model-free data-driven approach for computing whole-brain WM topologic arrangement and connectivity strength between brain regions by utilizing diffusion MRI of 70 participants with early-stage drug-naive PD and 41 healthy controls. Subsequently, we generated a novel group-specific WM anatomical network by minimizing variance in anatomical connectivity of each group. Global WM connectivity strength and network measures were computed on this group-specific WM anatomical network and were compared between the groups. We tested correlations of these network measures with clinical measures in PD to assess their pathophysiologic relevance.ResultsPD-relevant cortical and subcortical regions were identified in the novel PD-specific WM anatomical network. Impaired modular organization accompanied by a correlation of network measures with multiple clinical variables in early PD were revealed. Furthermore, disease duration was negatively correlated with global connectivity strength of the PD-specific WM anatomical network.ConclusionBy minimizing variance in anatomical connectivity, this study found the presence of a novel WM structural connectome in early PD that correlated with clinical symptoms, despite the lack of a priori analytic assumptions. This included the novel finding of increased structural connectivity between known PD-relevant brain regions. The current study provides a framework for further investigation of WM structural changes underlying the clinical and pathologic heterogeneity of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.