Ce 2 (MoO 4 ) 3 was prepared using dielectric barrier discharge (DBD) plasma method, co-precipitation method and hydrothermal method, respectively, with water/ethanol (W/O) as solvent, oleylamine (OAm) and oleic acid (OAc) as additives. Preparation method showed significant influence on the morphological and structural properties, as well as photocatalytic performance. Ce 2 (MoO 4 ) 3 synthesized with DBD plasma (MO-P) was mainly flowerlike nanosheets, which were beneficial to promoting electron transfer and providing more space for catalytic activity. Also, MO-P samples exhibited more oxygen vacancies, which were conducive to the photocatalytic performance. What's more, MO-P showed lower PL intensity and narrow energygap, which implied a slow photoelectron-hole pair recombination rate and an increased electron transfer rate. The degradation rate of methyl orange (50 mg/L) could achieve 98% within 12 min with 0.5 g/L MO-P. Hydroxyl radicals (•OH) and superoxide radicals (•O 2 − ) played a major effect. Plasma synthesis method exhibited potential application prospect in photocatalysts preparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.