Soil moisture is an important parameter in land surface processes, which can control the surface energy and water budgets and thus affect the air temperature. Studying the coupling between soil moisture and air temperature is of vital importance for forecasting climate change. This study evaluates this coupling over China from 1980–2013 by using an energy-based diagnostic method, which represents the momentum, heat, and water conservation equations in the atmosphere, while the contributions of soil moisture are treated as external forcing. The results showed that the soil moisture–temperature coupling is strongest in the transitional climate zones between wet and dry climates, which here includes Northeast China and part of the Tibetan Plateau from a viewpoint of annual average. Furthermore, the soil moisture–temperature coupling was found to be stronger in spring than in the other seasons over China, and over different typical climatic zones, it also varied greatly in different seasons. We conducted two case studies (the heatwaves of 2013 in Southeast China and 2009 in North China) to understand the impact of soil moisture–temperature coupling during heatwaves. The results indicated that over areas with soil moisture deficit and temperature anomalies, the coupling strength intensified. This suggests that soil moisture deficits could lead to enhanced heat anomalies, and thus, result in enhanced soil moisture coupling with temperature. This demonstrates the importance of soil moisture and the need to thoroughly study it and its role within the land–atmosphere interaction and the climate on the whole.
Soil moisture plays an essential role in the land-atmosphere interface. It has become necessary to develop quality large-scale soil moisture data from satellite observations for relevant applications in climate, hydrology, agriculture, etc. Specifically, microwave-based observations provide more consistent land surface records because they are unhindered by cloud conditions. The recent microwave radiometers onboard FY-3B, FY-3C and FY-3D satellites launched by China’s Meteorological Administration (CMA) extend the number of available microwave observations, covering late 2011 up until the present. These microwave observations have the potential to provide consistent global soil moisture records to date, filling the data gaps where soil moisture estimates are missing in the existing records. Along these lines, we studied the FY-3C to understand its added value due to its unique time of observation in a day (ascending: 22:15, descending: 10:15) absent from the existing satellite soil moisture records. Here, we used the triple collocation technique to optimize a benchmark retrieval model of land surface temperature (LST) tailored to the observation time of FY3C, by evaluating various soil moisture scenarios obtained with different bias-imposed LSTs from 2014 to 2016. The globally optimized LST was used as an input for the land parameter retrieval model (LPRM) algorithm to obtain optimized global soil moisture estimates. The obtained FY-3C soil moisture observations were evaluated with global in situ and reanalysis datasets relative to FY3B soil moisture products to understand their differences and consistencies. We found that the RMSEs of their anomalies were mostly concentrated between 0.05 and 0.15 m3 m−3, and correlation coefficients were between 0.4 and 0.7. The results showed that the FY-3C ascending data could better capture soil moisture dynamics than the FY-3B estimates. Both products were found to consistently complement the skill of each other over space and time globally. Finally, a linear combination approach that maximizes temporal correlations merged the ascending and descending soil moisture observations separately. The results indicated that superior soil moisture estimates are obtained from the combined product, which provides more reliable global soil moisture records both day and night. Therefore, this study aims to show that there is merit to the combined usage of the two FY-3 products, which will be extended to the FY-3D, to fill the gap in existing long-term global satellite soil moisture records.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.