We report a sensitive approach for SERS detection of cytochrome c using target binding-induced conformational changes of signal transduction probe (STP). STP labeled with a SERS-active molecule, carboxy-X-rhodamine (ROX), is immobilized on the substrate where the formation of a rigid triplex switching structure with aptamers does not allow SERS amplification to take place. The target binding event leads to an enhancement in SERS intensity of ROX adsorbed on the gold surface. Meanwhile, we found that an appropriate STP surface density could shield the SERS signal produced by protein adsorption which would foul the sensing surface. In addition, cytochrome c aptamers used were not the original sequence but reorganized in the nonspecific binding site to adapt to our design. This method provides a low detection limit of 2 nM (10 fmol within 5 μL sample solution), and shows good selectivity toward cytochrome c compared to interfering proteins such as hemoglobin and immunoglobulin G. The general strategy of the method can also be extended to aptamer or DNA based sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.