Temperature rise in the Arctic is causing deepening of active layers and resulting in the mobilization of deep permafrost dissolved organic matter (DOM). However, the mechanisms of DOM mobilization from Arctic soils, especially upper soil horizons which are drained most frequently through a year, are poorly understood. Here we conducted a short‐term leaching experiment on surface and deep organic active layer soils, from the Yukon River basin, to examine the effects of DOM transport on bulk and molecular characteristics. Our data showed a net release of DOM from surface soils equal to an average of 5% of soil carbon. Conversely, deep soils percolated with surface leachates retained up to 27% of bulk DOM while releasing fluorescent components (up to 107%), indicating selective release of aromatic components (e.g., lignin and tannin), while retaining nonchromophoric components, as supported by spectrofluorometric and ultrahigh‐resolution mass spectroscopic techniques. Our findings highlight the importance of the lateral flux of DOM on ecosystem carbon balance as well as processing of DOM transport through organic active layer soils en route to rivers and streams. This work also suggests the potential role of leachate export as an important mechanism of C losses from Arctic soils, in comparison with the more traditional pathway from soil to atmosphere in a warming Arctic.
We constructed mass balances of both calcium and phosphorus for two watersheds in Big Cypress National Preserve in southwest Florida (USA) to evaluate the time scales over which its striking landscape pattern developed. This low-relief carbonate landscape is dotted with evenly spaced, evenly sized, shallow surface depressions that annually fill with surface water and thus support wetland ecosystems (e.g. cypress domes) embedded in a pine-dominated upland matrix with exposed bedrock. Local and landscape scale feedbacks between hydrology, ecological dynamics and limestone dissolution are hypothesized to explain this karst dissolution patterning. This hypothesis requires the region to be wet enough to initiate surface water storage, which constrains landscape formation to interglacial periods. The time scale therefore would be relatively recent if creation of the observed pattern occurred in the current interglacial period (i.e. Holocene), and older time scales could reflect inherited patterns from previous inter-glacial periods, or from other processes of abiotic karstification. We determined phosphorus stocks across four landscape compartments and estimated the limestone void space (i.e., wetland depression volume) across the landscape to represent cumulative calcium export. We calculated fluxes in (e.g., atmospheric deposition) and out (i.e., solute export) of the landscape to determine landscape denudation rates through mass balance. Comparing stocks and annual fluxes yielded independent estimates of landscape age from the calcium and phosphorus budgets. Our mass balance results indicate that the landscape began to develop in the early-mid Holocene (12,000-5000 ybp). Radiocarbon dating estimates implied similar rates of dissolution (~1 m per 3000-3500 years), and were in agreement with Holocene origin. This supports the hypothesis that ecohydrologic feedbacks between hydrology and vegetation occurring during the present interglacial period are sufficient to shape this landscape into the patterns we see today, and more broadly suggests the potential importance of biota in the development of macro-scale karst features.
The amorphous calcium carbonate (ACC) or polycrystalline vaterite, which has long-term water stability and thermal stability, can be induced by bacteria. These biogenic CaCO3 are organo-mineral complexes.
Biological processes exert important controls on geomorphic evolution of karst landscapes because carbonate mineral dissolution can be augmented and spatially focused by production of CO2 and biogenic acids from organic matter (OM) decomposition. In Big Cypress National Preserve in southwest Florida, depressional wetlands (called cypress domes) dissolved into surface‐exposed carbonate rocks and exhibit regular patterning (size, depth, and spacing) within the pine upland mosaic. To understand when wetland basins began to form and the role of spatially varying OM decomposition on bedrock weathering, we constructed age profiles of sediment accretion using compound‐specific radiocarbon analysis of long‐chain fatty acids and measured bulk OM properties and biomarker proxies (fatty acids and lignin phenols) in different zones (center vs. edge) of the wetlands. Based on compound‐specific radiocarbon analysis, landscape patterning likely began in the middle to late Holocene, with wetlands beginning to form earlier at higher elevations than at lower elevations within the regional landscape. Dominant vegetation appears to have shifted from graminoids to woody plants around 3,000 calendar years before the present, as reflected in downcore bulk carbon isotope data and lignin concentration, likely from increased precipitation and hydroperiods. OM is mostly accumulated in wetland centers, and wetland centers exhibit more carbonate dissolution due to inundation limiting atmospheric ventilation of CO2. Landscape development and patterning thus arise from interactions between hydrology, ecology, and ecological community evolution that control carbonate mineral dissolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.