Accurately evaluating minimal residual disease (MRD) could facilitate early intervention and personalized adjuvant therapies. Here, using ultradeep targeted next-generation sequencing (NGS), we evaluate the clinical utility of circulating tumor DNA (ctDNA) for dynamic recurrence risk and adjuvant chemotherapy (ACT) benefit prediction in resected non-small cell lung cancer (NSCLC). Both postsurgical and post-ACT ctDNA positivity are significantly associated with worse recurrence-free survival. In stage II-III patients, the postsurgical ctDNA positive group benefit from ACT, while ctDNA negative patients have a low risk of relapse regardless of whether or not ACT is administered. During disease surveillance, ctDNA positivity precedes radiological recurrence by a median of 88 days. Using joint modeling of longitudinal ctDNA analysis and time-to-recurrence, we accurately predict patients’ postsurgical 12-month and 15-month recurrence status. Our findings reveal longitudinal ctDNA analysis as a promising tool to detect MRD in NSCLC, and we show pioneering work of using postsurgical ctDNA status to guide ACT and applying joint modeling to dynamically predict recurrence risk, although the results need to be further confirmed in future studies.
A method for carrying out 2D gel electrophoresis in a capillary format is presented. In this method, separation in the first dimension is carried out in a 1D capillary, with this system physically isolated from the capillaries that provide the separation in the second dimension. After completion of the first separation, the 1D channel is physically connected to the 2D capillaries, and a second separation is carried out in an orthogonal set of parallel capillaries. The ability of poly(dimethylsiloxane) (PDMS) to support the fabrication of 3D microfluidic systems makes it possible to produce membranes that both enclose the gel used in the first separation in a capillary and provide passages for the proteins to migrate into the array of orthogonal capillaries. The elastomeric nature of PDMS makes it possible to make reversible connections between pieces of PDMS. The feasibility of this system is demonstrated using a protein mixture containing fluorescein-conjugated carbonic anhydrase, fluorescein-conjugated BSA, and Texas Red-conjugated ovalbumin. This work suggests one type of design that might form the basis for a microfabricated device for 2D capillary electrophoresis.
The transport of calcium ions (Ca(2+)) to the cytosol is essential for immunoreceptor signaling, regulating lymphocyte differentiation, activation, and effector function. Increases in cytosolic-free Ca(2+) concentrations are thought to be mediated through two interconnected and complementary mechanisms: the release of endoplasmic reticulum Ca(2+) "stores" and "store-operated" Ca(2+) entry via plasma membrane channels. However, the identity of molecular components conducting Ca(2+) currents within developing and mature T cells is unclear. Here, we have demonstrated that the L-type "voltage-dependent" Ca(2+) channel Ca(V)1.4 plays a cell-intrinsic role in the function, development, and survival of naive T cells. Plasma membrane Ca(V)1.4 was found to be essential for modulation of intracellular Ca(2+) stores and T cell receptor (TCR)-induced rises in cytosolic-free Ca(2+), impacting activation of Ras-extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells (NFAT) pathways. Collectively, these studies revealed that Ca(V)1.4 functions in controlling naive T cell homeostasis and antigen-driven T cell immune responses.
Nostalgia, a sentimental longing or wistful affection for the past, is a predominantly positive and social emotion. Recent evidence suggests that nostalgia maintains psychological comfort. Here, we propose, and document in five methodologically diverse studies, a broader homeostatic function for nostalgia that also encompasses the maintenance of physiological comfort. We show that nostalgia--an emotion with a strong connotation of warmth--is triggered by coldness. Participants reported stronger nostalgia on colder (vs. warmer) days and in a cold (vs. neutral or warm) room. Nostalgia, in turn, modulates the interoceptive feeling of temperature. Higher levels of music-evoked nostalgia predicted increased physical warmth, and participants who recalled a nostalgic (vs. ordinary autobiographical) event perceived ambient temperature as higher. Finally, and consistent with the close central nervous system integration of temperature and pain sensations, participants who recalled a nostalgic (vs. ordinary autobiographical) event evinced greater tolerance to noxious cold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.