This paper presents a new parallel distributed structural health monitoring technology based on the wireless sensor network and multi-agent system for large scale engineering structures. The basic idea of this new technology is that of adopting the smart wireless sensor with on-board microprocessor to form the monitoring sensor network and the multi-agent technology to manage the whole health monitoring system. Using this technology, the health monitoring system becomes a distributing parallel system instead of a serial system with all processing work done by the central computer. The functions, the reliability, the flexibility and the speed of the whole system will be greatly improved. In addition, with wireless communication links instead of wires, the system weight and complexity will be lowered. In this paper, the distributed smart wireless sensor network is designed first based on the Berkeley Mote Mica wireless sensor platform. Two kinds of sensor have been adopted: piezoelectric sensors and electric resistance wires. They are connected to a Mica MPR board though a designed charge amplifier circuit or bridge circuit and MTS101 board. Seven kinds of agents are defined for the structural health monitoring system. A distributed health monitoring architecture based on the defined agents is proposed. Finally, a composite structural health monitoring system based on a Mica wireless platform and multi-agent technology is developed to evaluate the efficacy of the new technology. The developed system can successfully monitor the concentrated load position or a loose bolt position.
Hepatocellular carcinoma (HCC) was the most common primary liver cancer, and its resistance to anti-tumor drugs often caused the death of patients suffering with HCC. Matrix stiffness was reported to be closely related to tumor chemoresistance; however, the relationship between HCC drug resistance and three-dimensional (3D) matrix stiffness is still unclear at present. In this study, alginate gel (ALG) beads with controllable matrix stiffness were used to mimic tumor tissue rigidity, and the role of 3D matrix stiffness in regulating the chemoresistance of HCC cells was investigated by using these ALG beads. It was found that HCC cells in ALG beads with 105 kPa stiffness had highest resistance to paclitaxel, 5-FU, and cisplatin. Although the mechanism was still uncovered, ABC transporters and endoplasmic reticulum stress-related molecules were highly expressed in ALG bead-encapsulated HCC cells compared with two-dimensional-cultured cells, which suggested a very complex mechanism underlying HCC drug resistance in 3D culture conditions. In addition, to mimic the specific stiffness of HCC tumor tissue, or other tumor tissues in vivo, response surface methodology (RSM) was used to build up a prediction mathematical model so that ALG beads with desired matrix stiffness could be prepared by simply changing three factors: molecular weight, G content, and alginate concentration.
BackgroundEndometrial regenerative cells (ERCs) are mesenchymal-like stem cells that can be non-invasively obtained from menstrual blood and are easily grown /generated at a large scale without tumorigenesis. We previously reported that ERCs exhibit unique immunoregulatory properties in vitro, however their immunosuppressive potential in protecting the colon from colitis has not been investigated. The present study was undertaken to determine the efficacy of ERCs in mediating immunomodulatory functions against colitis.MethodsColitis was induced by 4% dextran-sulfate-sodium (DSS, in drinking water) in BALB/c mice for 7 days. ERCs were cultured from healthy female menstrual blood, and injected (1 million/mouse/day, i.v.) into mice on days 2, 5, and 8 following colitis induction. Colonic and splenic tissues were collected on day 14 post-DSS-induction. Clinical signs, disease activity index (DAI), pathological and immunohistological changes, cytokine profiles and cell populations were evaluated.ResultsDSS-induced mice in untreated group developed severe colitis, characterized by body-weight loss, bloody stool, diarrhea, mucosal ulceration and colon shortening, as well as pathological changes of intra-colon cell infiltrations of neutrophils and Mac-1 positive cells. Notably, ERCs attenuated colitis with significantly reduced DAI, decreased levels of intra-colon IL-2 and TNF-α, but increased expressions of IL-4 and IL-10. Compared with those of untreated colitis mice, splenic dendritic cells isolated from ERC-treated mice exhibited significantly decreased MHC-II expression. ERC-treated mice also demonstrated much less CD3+CD25+ active T cell and CD3+CD8+ T cell population and significantly higher level of CD4+CD25+Foxp3+ Treg cells.ConclusionsThis study demonstrated novel anti-inflammatory and immunosuppressive effects of ERCs in attenuating colitis in mice, and suggested that the unique features of ERCs make them a promising therapeutic tool for the treatment of ulcerative colitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.