To apply deconvolution algorithm in computer tomography (CT) perfusion imaging of acute cerebral infarction (ACI), a convolutional neural network (CNN) algorithm was optimized first. RIU-Net was applied to segment CT image, and then equipped with SE module to enhance the feature extraction ability. Next, the BM3D algorithm, Dn CNN, and Cascaded CNN were compared for denoising effects. 80 patients with ACI were recruited and grouped for a retrospective analysis. The control group utilized the ordinary method, and the observation group utilized the algorithm proposed. The optimized model was utilized to extract the feature information of the patient’s CT images. The results showed that after the SE module pooling was added to the RIU-Net network, the utilization rate of the key features was raised. The specificity of patients in observation group was 98.7%, the accuracy was 93.7%, and the detected number was (1.6 ± 0.2). The specificity of patients in the control group was 93.2%, the accuracy was 87.6%, and the detected number was (1.3 ± 0.4). Obviously, the observation group was superior to the control group in all respects (P < 0.05). In conclusion, the optimized model demonstrates superb capabilities in image denoising and image segmentation. It can accurately extract the information to diagnose ACI, which is suggested clinically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.