Background: Diabetic cardiomyopathy (DCM), a common complication of diabetes mellitus, eventually leads to heart failure. Carvacrol is a food additive with diverse bioactivities. We aimed to study the protective effects and mechanisms of carvacrol in DCM.
Methods: We used a streptozotocin-induced and db/db mouse model of types 1 and 2 diabetes mellitus (T1DM and T2DM), respectively. Both study groups received daily intraperitoneal injections of carvacrol for 6 weeks. Cardiac remodeling was evaluated by histological analysis. We determined gene expression of cardiac remodeling markers (Nppa and Myh7) by quantitative real-time PCR and cardiac function by echocardiography. Changes of PI3K/AKT signaling were determined with Western blotting. GLUT4 translocation was evaluated by Western blotting and immunofluorescence staining.
Results: Compared with control mice, both T1DM and T2DM mice showed cardiac remodeling and left ventricular dysfunction. Carvacrol significantly reduced blood glucose levels and suppressed cardiac remodeling in mice with T1DM and T2DM. At the end of the treatment period, both T1DM and T2DM mice showed lesser cardiac hypertrophy, Nppa and Myh7 mRNA expressions, and cardiac fibrosis, compared to mice administered only the vehicle. Moreover, carvacrol significantly restored PI3K/AKT signaling, which was impaired in mice with T1DM and T2DM. Carvacrol increased levels of phosphorylated PI3K, PDK1, AKT, and AS160 and inhibited PTEN phosphorylation in mice with T1DM and T2DM. Carvacrol treatment promoted GLUT4 membrane translocation in mice with T1DM and T2DM. Metformin was used as the positive drug control in T2DM mice, and carvacrol showed comparable effects to that of metformin on cardiac remodeling and modulation of signaling pathways.
Conclusion: Carvacrol protected against DCM in mice with T1DM and T2DM by restoring PI3K/AKT signaling-mediated GLUT4 membrane translocation and is a potential treatment of DCM.
Fine-resolution differentiation trajectories of adult human hematopoietic stem cells (HSCs) involved in the generation of red cells is critical for understanding dynamic developmental changes that accompany human erythropoiesis. Using single-cell RNA sequencing (scRNA-seq) of primary human terminal erythroid cells (CD34−CD235a+) isolated directly from adult bone marrow (BM) and umbilical cord blood (UCB), we documented the transcriptome of terminally differentiated human erythroblasts at unprecedented resolution. The insights enabled us to distinguish polychromatic erythroblasts (PolyEs) at the early and late stages of development as well as the different development stages of orthochromatic erythroblasts (OrthoEs). We further identified a set of putative regulators of terminal erythroid differentiation and functionally validated three of the identified genes,AKAP8L,TERF2IP, andRNF10, by monitoring cell differentiation and apoptosis. We documented that knockdown ofAKAP8Lsuppressed the commitment of HSCs to erythroid lineage and cell proliferation and delayed differentiation of colony-forming unit-erythroid (CFU-E) to the proerythroblast stage (ProE). In contrast, the knockdown ofTERF2IPandRNF10delayed differentiation of PolyE to OrthoE stage. Taken together, the convergence and divergence of the transcriptional continuums at single-cell resolution underscore the transcriptional regulatory networks that underlie human fetal and adult terminal erythroid differentiation.
ObjectiveTo reveal the prevalence and molecular characterization of (δβ)0‐thalassemia [(δβ)0‐thal] and hereditary persistence of fetal hemoglobin (HPFH) in the Chinese Zhuang population.MethodsA total of 105 subjects with fetal hemoglobin (Hb F) level ≥5% from 14 204 unrelated ones were selected for the study. Multiplex ligation dependent probe amplification was firstly used to analyze dosage changes of the β‐globin gene cluster for associated with (δβ)0‐thal and HPFH mutations. The gap polymerase chain reaction was then performed to identify the deletions using the respective flanking primers. Hematologic data were recorded and correlated with the molecular findings.ResultsTwenty‐one (0.15%) subjects were diagnosed with Chinese Gγ(Aγδβ)0‐thal. Nine (0.06%) were diagnosed with Southeast Asia HPFH (SEA‐HPFH) deletion. Seventy‐five (0.53%) cases remained uncharacterized. Three genotypes for Chinese Gγ(Aγδβ)0‐thal and SEA‐HPFH deletion were identified, respectively. The genotype‐phenotype relationships were discussed.ConclusionOur study for the first time demonstrated that (δβ)0 and HPFH were not rare events, and molecular characterized Gγ(Aγδβ)0‐thal and HFPH mutations in the Chinese Zhuang population. The findings in our study will be useful in genetic counseling and prenatal diagnostic service of β‐thalassemia in this populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.