Abstract:To address deficiencies in the process of fault diagnosis of belt conveyor, this study uses a BP neural network algorithm combined with fuzzy theory to provide an intelligent fault diagnosis method for belt conveyor and to establish a BP neural network fault diagnosis model with a predictive function. Matlab is used to simulate the fuzzy BP neural network fault diagnosis of the belt conveyor. Results show that the fuzzy neural network can filter out unnecessary information; save time and space; and improve the fault diagnosis recognition, classification, and fault location capabilities of belt conveyor. The proposed model has high practical value for engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.